- optional problems

A*) Vortex Near the Ground (optional) Use the method of images to construct the complex potential for a line vortex (at $z=+i$, with circulation $\Gamma=1$) in the vicinity of a ground plane (at $\operatorname{Im} z=0$). Make a sketch of the flow contours - they are related to Figure 4.2 in Acheson.
Express $\Phi^{\prime}(z)$ as a Laurent series about $z=i$. Next, apply the Blasius force integral for a suitable body imbedded in your flow (indicate on your sketch). Can you use this result to explain why the vortex in the airplane landing video moved as it did?
bonus: Does incorporating a second vortex line account for the vertical motion?

B*) Plotting an Airfoil (optional) Following Acheson, section 4.9
In view of Figs 4.5 and 4.6 it will come as no surprise that if we use the mapping (4.56) on a circle in the z-plane which passes through $z=a$ but which encloses $z=-a$, we obtain an aerofoil with a rounded nose, but a sharp trailing edge \ldots

Verify this statement by plotting an asymmetric airfoil using the Zhukovsky transformation

$$
Z=z+\frac{a^{2}}{z} .
$$

The plotting command axis equal may be needed to get the image to look right. Give a formula for the angle which the trailing edge makes with the horizontal, and use your plot to verify its correctness.
my first airfoil

