Homework \#9 • MATH 462 • Viscous Flow

- write-ups are due 12:00 noon on Wednesday 07 April.
A) Pipe Poiseuille Flow (4 pages, 15 pts) Use the steady Navier-Stokes equations to calculate gravity-driven flow through a pipe which is inclined at an angle α from the horizontal. I recommend using cylindrical coordinates with the \hat{z}-axis oriented with the pipe axis - hence, gravity will be seem to be tilted in the equations.

Show that in the above coordinate geometry

$$
\vec{g}=g(-\cos \alpha(\sin \theta \hat{r}+\cos \theta \hat{\theta})+\sin \alpha \hat{z})
$$

It is not surprising that the axial velocity is z-independent, but it turns out also to be θ-independent (like usual pipe Poiseuille flow). Thus $W(r)$ only. The pressure is also z independent, but develops a cross-sectional distribution.
Calculate the mass flux through the pipe. Plot the cross-sectional pressure distribution.
B) Spinning Sphere (5 pages, 20pts) Solve the problem as posed by $\# 7.2$ in Acheson. Presentation (with discussion) will be graded seriously. Show that you understand both the mathematics and the fluid dynamics. (Presentations with only equations will earn only a 1/4-grade. Key words are: correctness, clarity \& conciseness.) The solution strategy for this problem parallels the flow past of a sphere problem in Section 7.2.

