Homework #05 • MATH495/STAT490 • More Conditioning

- submit your write-up before 12 noon on **Thursday** 16 October.
- page limits will be enforced.
- highlight major results.
- happy thanksgiving.
- to aid the grader, please begin each lettered problem on a new page.
- A) How to be Fashionably Late (2+2 pages, 10 pts) Problems # 42 & 55 from from Chapter 3 of Ross. Begin # 42 by stating the mean and variance of a Bernoulli random variable. Carry out #42 for an arbitrary number n invitees, then specialize your result to n = 11. # 55 can be worked as stated in the text. You encouraged to discuss conditioning strategies on the webct discussion group.
- B) The Average of Exponential Random Variables (4 pages, 10 pts) This exercise investigates the random variables, S_n and μ_n , which are the sum and average of n exponentially-distributed random variables $\{x_1, x_2 \dots x_n\}$ which have identical values of λ
 - calculate the PDF, $f(S_2)$, by conditioning on x_2 (see also page 58);
 - hypothesize the PDF for general n. You might need to obtain $f(S_3)$ to convince yourself you see the straightforward pattern;
 - verify your PDF by induction (integrals are no worse than powers);
 - determine the PDF for the average μ_n using the fact that, given a random variable x with PDF, f(x), the random variable obtained by dividing by a constant y = x/a has PDF af(ay),
 - annotate the attached and completely unannotated (so very irresponsible of me) figure.

