Homework \#06 • MATH495/STAT490 • Variances of Estimated PDFs \& CDFs

- submit your write-up before 12 noon on Thursday 23 October.
- page limits will be enforced.
- highlight major results.
- please indicate partners in collaborative efforts. Thank you.
- to aid the grader, please begin each lettered problem on a new page.
A) Variance of Histograms (2 pages +2 plots, 10 pts) The goal of this problem is to understand the nature of the variations encountered when trying estimate the PDF by making a histogram. The context for this study will be the simple histogram technique as demonstrated by the script $w 07$ unif. m for $N=500$ uniformly distributed random variables on $(0,1)$ and $M=10$ disjoint bins. The bin widths are $\Delta b=1 / M$ and the bin centres are located at $x_{k}=(k-1 / 2) / M$ for $k=1 \ldots M$. Recall the estimated PDF formula

$$
f\left(x_{k}\right) \approx \tilde{f}\left(x_{k}\right)=\tilde{f}_{k}=\frac{\# \mathrm{rv}^{\prime} \mathrm{s} \text { in bin } k}{N \Delta b}
$$

- explain why the \# of rv's in bin j is a binomial random variable, then use the scaling properties of the mean and variance to obtain $\mathrm{E}\left[f_{k}\right]$ and $\operatorname{Var}\left[f_{k}\right]$;
- modify the given script to generate several estimated PDFs and verify, by simulation, the theoretical dependence of $\operatorname{Var}\left[f_{k}\right]$ on N and M;
- make a $\log \log$ plot of $\operatorname{Var}\left[f_{k}\right]$ versus N with fixed M, and another versus $M-1$ with fixed N. (Do you see why you may choose any value of k ?)
B) Variance of Empirical CDFs (3 pages +2 plots, 10 pts) The goal of this problem is to understand the nature of the variations encountered when producing an empirical CDF. The context for this study will be the method (of HW \#03) as demonstrated by the script w07cdf.m for $N=500$ uniformly distributed random variables x_{j} on $(0,1)$. Recall the empirical CDF formula

$$
\tilde{F}_{k}=\tilde{F}\left(\tilde{x}_{k}\right)=k / N
$$

where $0<\tilde{x}_{1}<\tilde{x}_{2}<\ldots<\tilde{x}_{N}<1$ are the sorted random variables.

- explain why the sorted index j for $\tilde{x}_{k}=x_{1}=y$ is a binomial random variable, then give the conditional probability $P\left\{\tilde{x}_{k}=x_{1} \mid x_{1}=y\right\}$;
- give the probability $P\left\{\tilde{x}_{k}=y\right\}$ and quote a result from the 06 October lecture to verify that the integral over all y is one;
- use the previous probability to calculate $\mathrm{E}\left[\tilde{x}_{k}\right]$ and $\operatorname{Var}\left[\tilde{x}_{k}\right]$ (you might also note the strange similarity to Problem \#88 in Chapter 3 in Ross - although i think there may be a typo in part (b), Explain how this proves the result of Section 3.6.3?);
- modify the script $w 0 \% c d f . m$ to generate several estimated CDFs and verify, by simulation, the theoretical dependence of $\operatorname{Var}\left[\tilde{x}_{k}\right]$ on N and k;

Bonus: Comment briefly on the reason why the CDF method seems to give more satisfying results than the histogram PDF.
C) Rolling (2 pages, 10 pts) Like Problem \#91 in Ross, but easier. Read Case 1 of Section 3.6.4 and give the expected number of rolls of a single die until the pattern $1,2,3,4,5,6$ in arises consecutive rolls.

