- submit your write-up before 12 noon on Thursday 06 November.
- note page limits, highlight major results.
- please indicate partners in collaborative efforts. Thank you.
- to aid the grader, please begin each lettered problem on a new page.
A) Geometric Random Variables (3 pages, 10 pts) The geometric distribution is defined on page 32 of Ross:

$$
\operatorname{Prob}\{X=n \mid n=1,2,3, \ldots\}=P_{n}=p q^{n-1} \quad \text { where } q=(1-p) .
$$

- if X is a geometric random variable, what are the expected values, $\mathrm{E}\left[(1 / 2)^{X}\right]$ and $\mathrm{E}\left[z^{X}\right]$?
- if X and Y are independent and identically distributed geometric random variables, what is the expected value of $\mathrm{E}\left[z^{X+Y}\right]=\mathrm{E}\left[z^{X} z^{Y}\right]$?
- based on the above result, what is the probability that the sum of two independent, identically distributed geometric random variables is S ? Why is this problem hardly different for the sum of n such random variables?
B) Poisson Random Variables (3 pages +1 page plot, 10 pts) This problem investigates the use of generating functions for Poisson random variables with common mean λ.
- give the generating function for a Poisson distributed random variable;
- if Y is Poisson distributed, give the generating function for the random variable $-Y$ (please don't get this part incorrect);
- using the logic of problem \mathbf{A}), use a generating function argument to calculate the mean and variance of the difference $D=X-Y$ of two Poisson random variables;
- verify the above result by simulation \& produce an empirical CDF.
- bonus: is evaluating the probability distribution for D a reasonable question? If so, do so; if not why not?
C) Raining Again (2 pages, 10 pts) Problems \#2 and \#3 from Chapter 4 of Ross. The \mathbf{P} matrix has entries $p_{j k}$ (the element in row j and column k) which are the probabilities of transitioning to state k from state j.

