Homework \#08 • MATH495/STAT490 • Markov Processes

- submit your write-up before 12 noon on Thursday 13 November.
- note page limits, highlight major results.
- please indicate partners in collaborative efforts. Thank you.
- to aid the grader, please begin each lettered problem on a new page.
- the page limit on part A) has not been set as a guideline for how many pages you should write, but rather to leave you enough space so that matrices and vectors can be written to be comfortably read.
A) Ehrenfest Model (7 pages, 20 pts) The ultimate goal is to answer the question, Beginning from the state with all 4 items in one urn, what is the expected number of steps T until all the items are in the other urn? Denote the states by $s_{j}=(j, 4-j)$ where $j=0,1,2,3,4$.
- use the modified Markov transition matrix for which the (4,0)-state is now absorbing (that is, $p_{4 k}=0$ except for $p_{44}=1$);
- draw the state diagram for this process;
- determine the transition matrix \mathbf{P};
- find the exact eigenvalues of \mathbf{P}^{T} (you may use the maple worksheet) and show that the result agrees with matlab's numerical output;
- the eigenvectors of \mathbf{P}^{T} for each eigenvalue λ can be obtained from the formula

$$
\vec{v}_{\lambda}=\left(\begin{array}{r}
\left(\lambda^{2}-3 / 4\right) \lambda(\lambda-1) \\
\left(\lambda^{2}-3 / 8\right)(\lambda-1) \\
(3 / 4) \lambda(\lambda-1) \\
(3 / 8)(\lambda-1) \\
(3 / 32)
\end{array}\right)
$$

show that the results are consistent with matlab's numerical output;

- use matlab to determine the values a_{λ} such that

$$
\vec{y}^{n}=\sum_{\lambda} a_{\lambda} \lambda^{n} \vec{v}_{\lambda}
$$

- finally note that the final component of \vec{y}^{n} is the probability that $T \leq n$ and recall the formula from the 01 October lecture

$$
E[T]=\sum_{0}^{\infty} P\{T>n\}
$$

this should result in several geometric series which then answers the expected value question.

- bonus: where does that eigenvector formula come from?
B) Still More Rain (3 pages, 10 pts) Problem \# 46 from Ross, Chapter 4.

