Homework \#10 • MATH495/STAT490 • Last Homework

- submit your write-up before 12 noon on Thursday 27 November.
A) Random Walk I (4 pages, 10 pts) For the one-dimensional random walk, denote the walker's position at step n by s_{n}. The walker begins in state $s_{0}=0$ and moves with transition probabilities p to the right and q to the left. Define two probabilities at each step: return to origin $u_{n}=\mathrm{P}\left\{s_{n}=0\right\}$ and first return to origin $v_{n}=\mathrm{P}\left\{s_{n}=0 \mid s_{k} \neq 0, k=1 \ldots n-1\right\}$. Find a combinatorial expression for u_{n} and construct its generating function. Argue that the summation is in fact

$$
\begin{equation*}
U(z)=\sum_{n=0}^{\infty} u_{n} z^{n}=\left(1-4 p q z^{2}\right)^{-1 / 2} \tag{1}
\end{equation*}
$$

Next, explain why

$$
u_{n}=\sum_{k=1}^{n} v_{k} u_{n-k}
$$

substitute into the summation (1), and then use this result to find the generating function for v_{n}. Finally, use this second generating function $V(z)$ to comment on the total probability and mean number of steps for the first return to origin.
B) Random Walk II (4 pages max, 10 pts) For the symmetric ($p=q=1 / 2$) one-dimensional random walk, denote the number of paths connecting $s_{0}=a$ to $s_{n}=b$ as $N(a, b, n)$ for $a, b>0$. Now consider the case of reflecting random walks, whose paths are restricted to states $s_{n} \geq 0$. These walks have symmetric left/right transitions, except in the event that $s_{n}=0$, where the next state is $s_{n+1}=1$ with probability 1 . Denote the total number of reflecting random walks connecting $s_{0}=a$ to $s_{n}=b$ as $N^{r}(a, b, n)$. The key property connecting these random walks is the reflection principle which says that $N^{r}(a, b, n)=N(-a, b, n)$. Apply this principle to the following problem.
Suppose that survivor A gets a votes and survivor B gets b, with $a>b$. If the votes are randomly mixed before being revealed, what is the chance that A is always ahead of B during the final exciting vote tally?

