and

(6.6)
$$s_n^2 = \sum_{k=1}^n \frac{n-k}{(n-k+1)^2} \sim \log n.$$

 $S_n = X_1 + \ldots + X_n$ is the covariance. The number of permutations with cycles between $\log n + \alpha(\log n)^{\frac{1}{2}}$ and the number of permutations with cycles between $\log n + \alpha(\log n)^{\frac{1}{2}}$ and $\log n + \alpha(\log n)^{\frac{1}{2}}$ fined forms of the central limit theorem give more precise estimates. $\log n + \beta(\log n)^{1}$ is given by $n! \{\Phi(\beta) - \Phi(\alpha)\}$, approximately. The re- $X_1 + \ldots + X_n$ is the total number of cycles. The average is m_n ;

*7. THE STRONG LAW OF LARGE NUMBERS

conclusion that large values of $|S_n - m_n|/n$ occur at infrequent finite or infinite limits. The law of large numbers permits only the remains small for all large n; it can happen that the law of large numnoulli trials (chapter VIII) that this does not imply that $|S_n - m_n|/n$ in comparison to n. It has been pointed out in connection with Berbers applies but that $|S_n - m_n|/n$ continues to fluctuate between ticular sufficiently large n the deviation $|S_n - m_n|$ is likely to be small The (weak) law of large numbers (5.4) asserts that for every par-

ability $1 - \delta$ or better that for every r > 0 all r + 1 inequalities every pair $\epsilon > 0$, $\delta > 0$, there corresponds an N such that there is prob-We say that the sequence \mathbf{X}_k obeys the strong law of large numbers if to

(7.1)
$$\frac{|S_n - m_n|}{n} < \epsilon, \quad n = N, N+1, ..., N+r$$

will be satisfied

We can interpret (7.1) roughly by saying that with an overwhelming probability $|S_n - m_n|/n$ remains small 12 for all n > N.

The Kolmogorov Criterion. The convergence of the series

$$\sum \frac{\sigma_k^2}{k^2}$$

*This section treats a special topic and may be omitted.

LAWS OF LARGE NUMBERS

is a sufficient condition for the strong law of large numbers to apply to the sequence of mutually independent random variables X_k with variances σ_k^2 .

for all ν sufficiently large ($\nu > \log N$) and all rthe inequality (7.1) does not hold. Obviously it suffices to prove that *Proof.* Let A_r be the event that for at least one n with $2^{r-1} < n \le 2^r$

$$P{A_{\nu}} + P{A_{\nu+1}} + \ldots + P{A_{\nu+r}} < \delta,$$

that for some n with $2^{\nu-1} < n \le 2^{\nu}$ that is, that the series $\Sigma P\{A_{\nu}\}$ converges. Now the event A_{ν} implies

$$|\mathbf{S}_n - m_n| \ge \frac{\epsilon}{2} \cdot 2^{\nu}$$

and by Kolmogorov's inequality (chapter IX, section 7)

$$(7.4) P\{A_{\nu}\} \le 4\epsilon^{-2} \cdot s_{2\nu}^{2} \cdot 2^{-2\nu}$$

Hence

$$(7.5) \sum_{\nu=1}^{\infty} \mathbf{P}\{A_{\nu}\} \le 4\epsilon^{-2} \sum_{\nu=1}^{\infty} 2^{-2\nu} \sum_{k=1}^{2^{\nu}} \sigma_{k}^{2} = 4\epsilon^{-2} \sum_{k=1}^{\infty} \sigma_{k}^{2} \sum_{k=1}^{2^{\nu} \ge k} 2^{-2\nu} \le$$

 $\leq 8\epsilon^{-2} \sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2}$

which accomplishes the proof.

As a typical application we prove the

of large numbers applies to the sequence $\{X_k\}$. common distribution $\{f(x_i)\}\$ and if $\mu = \mathbf{E}(\mathbf{X}_k)$ exists, then the strong law **Theorem.** If the mutually independent random variables X_k have a

ological interest of the proofs. For a converse cf. problem 17. The two theorems are treated independently because of the method-This theorem is, of course, stronger than the weak law of section 1.

of random variables are introduced by *Proof.* We again use the method of truncation. Two new sequences

(7.6)
$$\mathbf{U}_k = \mathbf{X}_k, \quad \mathbf{V}_k = 0 \quad \text{if} \quad |\mathbf{X}_k| < k,$$
$$\mathbf{U}_k = 0, \quad \mathbf{V}_k = \mathbf{X}_k \quad \text{if} \quad |\mathbf{X}_k| \ge k.$$

Kolmogorov's criterion. Clearly The \mathbf{U}_k are mutually independent, and we shall show that they satisfy

(7.7)
$$\sigma_k^2 \leq \bar{\mathbf{E}}(\mathbf{U}_k^2) = \sum_{|x_i| < k} x_j^2 f(x_j).$$

can Mathematical Society, vol. 51 (1945), pp. 800-832. cf. W. Feller, The fundamental limit theorems in probability, Bulletin of the American vol. 8 (1944), pp. 3-48. The present method is simpler but more restricted in scope; Bulletin de l'Académie Sciences URSS, Sér. Math. (in Russian, French summary), rived by other methods by V. Gončarov, Du domaine d'analyse combinatoire ¹¹ A great variety of asymptotic estimates in combinatorial analysis were de-

almost everywhere, and the weak law is equivalent to convergence in measure. tends to zero. In real variable terminology the strong law asserts convergence ¹² The general theory introduces a sample space corresponding to the infinite The strong law then states that with probability one $|S_n - m_n|/n$