- please respect page limits
- submit your write-up Wednesday 17 October.
- remember that the class e-mail is open for discussion.
- guidelines for reports are available on the class webpage.
A) Max Norm (2 pages): The L_{p} norm of a real function $g(x)$ on $a \leq x \leq b$ is defined by the integral

$$
\|g\|_{p}=\left(\int_{a}^{b}|g(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Assuming $g(x)$ is sufficiently continuous, use a formal Laplace argument to explain the terminology max norm associated with the asymptotic limit

$$
\|g\|_{\infty} \sim\|g\|_{p} \quad \text { as } p \rightarrow \infty .
$$

Note that the relevant Taylor expansion is that of $\ln |g(x)|$. Address the situations of: (i) single, isolated interior maxima; (ii) non-stationary endpoint maxima; (iii) multiple, but unequal, interior maxima; and (iv) multiple, but equal, interior maxima.
B) Hankel Function (5 pages) Present a steepest descent derivation for the first few terms of the asymptotic expansion for $r \rightarrow+\infty$ of the Hankel function $H_{0}^{1}(r)$. Begin from the integral representation

$$
H_{0}^{1}(r)=-\frac{2 i}{\pi} \int_{\mathcal{C}} e^{i r \cosh k} d k
$$

where the contour \mathcal{C} goes from $k=0$ to $\operatorname{Re}(k) \rightarrow+\infty$ with $\operatorname{Im}(k)=\pi / 2$. This is half of the Sommerfeld contour; the full contour begins from $\operatorname{Re}(k) \rightarrow-\infty$ with $\operatorname{Im}(k)=-\pi / 2$ and introduces a factor of $1 / 2$.
Also show that the limit as $R \rightarrow+\infty$ of the integral from $k=R$ to $k=R+i \pi / 2$ vanishes by a modified Jordan argument. (I found the substitution $m=e^{k}$ to be useful.)
C) Numerical Steepish Descent (2 pages) Design a quantitative comparison of numerical quadratures for the above Hankel integral following contours: (i) along the positive real axis; (ii) a (rough) piecewise linear approximation of \mathcal{C}; and (iii) a (reasonable) continuous parametric approximation of \mathcal{C}. Note that there are two numerical controls at work here, the quadrature tolerance and the use of a finite upper limit.
optional: Design a version of (iii) that maps onto a finite range of integration.
D) Series Solution (2 pages) Construct a solution $y(x)$ to the ODE

$$
y^{\prime \prime}+2 x y^{\prime}=0 \quad \text { with } y(+\infty)=y^{\prime}(+\infty)=0
$$

by hypothesizing the solution form $y(x)=f(x) e^{-x^{2}}$. Derive the ODE for the function $f(x)$ and develop a series solution in inverse powers of x. Comment upon the resulting expression.

