Investigation \#5 • APMA 900 • Boundary-Layer Theory

- submit your write-up by Wednesday 28 November.
A) Right-Side Boundary-Layer (4 pages): Rework the example from lecture

$$
-\epsilon u_{x x}+u_{x}=f(x) \quad ; \quad u(-1)=u(1)=0
$$

for $\epsilon \rightarrow 0^{+}$and where the sign of the second derivative term is taken to be negative. Extend the solution representation to one which has an $O\left(\epsilon^{6}\right)$ error that is uniform over the whole interval $-1 \leq x \leq+1$. Present a graphic which clearly demonstrates this uniformity of the error.
B) Non-Constant Coefficient (4 pages) The following is based upon Problem 9.20 in Bender \& Orszag. For what values of the real parameter α does the solution to the ODE boundary value problem

$$
\epsilon y_{x x}+x^{\alpha} y_{x}+y=0 \quad ; \quad y(0)=y(1)=1
$$

have a boundary-layer at $x=0$? It is also necessary to demonstrate that the asymptotic matching of the leading order is possible. (Hint: careful attention to detail will pay off.) The boundary scaling will need an approach similar to that used in Section 2.2 of Holmes.
Bonus: The webpage has an ODE solver for this problem that is not very well-behaved for small ϵ and seeming good values of α. Improve its performance.

