Investigations \#04 • APMA 935 • Elasticity

- Final write-up due, by Noon Friday 03 March. Please submit a progress report to webct by Monday 27 February.
A) Radiation II (6 pages) Push the analysis of Problem $\# 3.8$ (Billingham/King, page 73) further. (i) Before embarking on the approximation step, numerically compute a few far-field $(z \gg a)$ radiation profiles $\left(|\phi(r, z)|^{2}\right.$, for fixed $\left.z\right)$ to develop an understanding for the radiation pattern. Note that the integrand has an integrable singularity. Devise a strategy for intelligently dealing with this issue. Include parameter choices from both of the suggested limits involving $a \omega / c$.
(ii) The approximation step in the text seems to suggest replacing the Bessel function $J_{0}(\cdot)$ by an integral representation. Consider the far-field limit as a fixed value of $z \gg a$ with $r=z \tan \alpha$. Interchanging the order of integration would seem to lead to a steepest descent approximation for large z. I believe that the remaining integral over the angle θ can be addressed using stationary phase.

B) Torsional Waves (6 pages) Problem $\# 5.5$ (Billingham/King, page 171). I do not know for sure what the second part will reveal - although I have my guesses.

