Class Challenge ¢ Models of Nonlinearity (math 990) ¢ Lia Bronsard’s Talk

most work to be done during regular class periods (26,28 February).

indicate work done beyond these hours (who & when).
e Professor Kropinski will be acting as consultant while I'm away.

o [will also be able to answer e-mails on an intermittent basis.

A) One of the equations that Lia Bronsard spoke about was a (complex-valued) phase-field model
for a three-phase material in a two-dimensional domain D. The equation for z(z,y,t) is given
in terms of a gradient flow

Zt:_éj* : J[z,z*]:/ F(z,2*...) dedy (1)
0z D

- 1
Flz, 20,2, 2%, 25, 25) = €|V2[* + 1z = A) (= = B)(z - o)’

where J[z, z*] is a real-valued functional of z(z, y,?) and its complex conjugate z*(z, y,?). Note
that the functional should be calculated as if z and z* were independent, that is

d OF

T woan

d OF

8 _ OF _ 90 oF
. Oy 0z

dz Oz (2)

2

Absolute value bars indicate the magnitude of complex quantities. The complex-valued nature
of the solution arises when the constants A, B, C are taken to be complex numbers; in Lia’s
example, these were the complex cube roots of unity.

Taking the variational gives an evolution of the form
1
zt:6V2z—z{|(z—B)(z—C)|2(z—A)+...} (3)

Your mission ... is to write a matlab script that solves for the steady-states z(z, y) of this
problem on a unit-square domain, when the boundary assumes only the values z = A, B, C
along piecewise sections of the perimeter. For example:

Z=B

z=C Z=A

z=C

Although the regime of most interest for Professor Bronsard is the limit of € — 0, you will see
that this is also where the numerical problem becomes more difficult.

Methodology ... consider an iteration that solves for a sequence of z"(z, y) where

1
2 — 1 . . —
vizntl = = nonlinearity(z") (4)
and the Laplacian is approximated by the second-order difference approximation. This essen-
tially defines an iterative Poisson solve whose unknowns are the values of 2"+, The key piece
of numerical software that is required is an efficient Poisson solver.

The place T began is a matlab demo called delsgdemo (it is a standard demo, you too should
already have it). On the webpage is a modified version that T call my_delsqdemo.m which only
runs the case that is closest to what you need to know — it is a Poisson solver, but only allows
for zero boundary conditions. The basic Poisson inversion solves a set of linear equations

Zjk=1— 2Zjk + Zj k41

Zi—1k — 22k + Zit1k
J J it 3 = fj)k (5)

hZ

|

over all j, k in the interior of the unit square. Some data accounting is necessary to make the
left-side of these equations into a matrix that will multiply a vector that is built from the 2D
array of unknowns Zz; (this is done using numgrid). Note that the html documentation isn’t
as complete as the matlab inline help numgrid.

I have written a Laplace solver which does allow for non-zero boundary conditions. The way
it works is quite simple. If the above equation (5) involves a boundary point, T just move that
term to the right-side (effectively modifying the f; 1) and then use a Poisson solver for zero
boundaries! The code that does this is pois.m — both this and my_delsgdemo.m are available
from the class webpage.

The purpose of this exercise ... isto involve the whole class in this numerical development.
By the end of the week, everyone should be comfortable with any resulting codes. Once you
have figured out how pois.m works, I expect that as a group you can design an iteration routine
to solve Lia’s problem for e = 1. This approach seems to get bogged down once € as 0.38.

Good luck!

