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Abstract

We present a formal asymptotic analysis which suggests a model for three-phase
boundary motion as a singular limit of a vector-valued Ginzburg-Landau equation.
We prove short-time existence and uniqueness of solutions for this model, that is, for
a system of three-phase boundaries undergoing curvature motion with assigned angle
conditions at the meeting point. Such models pertain to grain boundary motion in
alloys. The method we use, based on linearization about the initial conditions, applies
to a wide class of parabolic systems. We illustrate this further by its application to an
eutectic solidification problem.
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1 Introduction

In this paper, we study some models for three-phase boundary motion. We show formally
how a geometrical model of interface motion arises as the singular limit of a vector-valued
reaction-diffusion equation. Then, we prove local existence and uniqueness of solutions for
the limiting problem using a widely applicable method based on linearization about the

initial configuration.

First we study formally the asymptotic behavior as ¢ — 0 of the vector-valued Ginzburg-

Landau problem

up = 262 Au — V, W (u) (1)

0
suloa, =0 or  u(z,)|an = h(z) 2)
u(z,0) = g(x), (3)

where v : @ xRt — R™, with Q@ C R® and n > 2, m > 2. The potential W : R™ — R is non
negative and its minimum value zero is attained at three vectors a,b and ¢, so as to model
a three-phase physical system or three grain boundaries meeting along n — 2 dimensional
surfaces. The parameter ¢ represents the thickness of the transition layer, and is assumed

to be small.

The study of (1)—(3) is partially motivated by the work of Allen and Cahn [AC] on
the motion of curved antiphase boundaries. Consideration of the gradient flow associated
to a free energy functional, modified so as to account for thermodynamic properties of

non-uniform systems ([CH],[AC]), lead them to the study of scalar Ginzburg-Landau type
diffusion equations ([GSS]) of the form of (1),

ur = MAu — aW'(u), (4)

where W is an even function with exactly two local minima. In equation (4), « is a positive
kinetic coefficient and the diffusion coefficient satisfies M = 2aK where K is the gradient
energy coefficient and is proportional to the square of the antiphase boundary thickness,
which is assumed to be much smaller than the boundary’s curvature. Allen and Cahn used
(4) to propose that the correct law of motion for antiphase boundaries is mean curvature
motion and, in particular, that it is independent of the surface tension of the interface. More

precisely the “surface tension” (i.e. the surface energy density) is proportional to av Kcg



where ¢g = ff /W (u)du, and the constant v and (3 are the two local minima of W. However
the velocity of the interface is proportional to a K times its mean curvature, and in particular

it is independent of ¢q.

Ginzburg-Landau models such as (1) have been used for many years in the physics and
materials literature; see e.g. [AC] for the case of a scalar order parameter, and [BLT] for
the vector-valued case. Often they are presented as phenomenological models. But they
also have a basis in statistical physics, see e.g. [DeMP]. The theory is now rather complete
for the scalar case, in view of the recent papers [Bo| and [KS]. We hope the present study
might facilitate similar progress for problems involving several phases, i.e. vector-valued

order parameters.

For the system (1)—(3) our formal asymptotic analysis suggests that u = u® separates
) into several regions where u® &~ a,b or ¢ respectively, and each interface separating these
regions moves in the slow time scale o = £?¢ with normal velocity equal (as ¢ — 0) to the sum
of its principal curvatures. To obtain this result we follow the general method of [RSK] and
[ORS]. In the process of developing the formal analysis, one needs an explicit representation
of standing waves connecting the local minima of W. It turns out that these standing waves
come out as a byproduct of works by Sternberg [S] on I'-convergence for the energy associated
to (1) in which W has two zeroes. In fact, one can obtain an explicit representation of the
standing waves in terms of geodesics for an appropriate metric, weighted by the potential
W (see Lemma 1). There are several results on existence of traveling waves for gradient
systems ([R], [Te]) but an added difficulty here is that the wells of W have the same height
(and hence the speed is zero). To our knowledge the existence of a standing wave for (1) has

not been proven elsewhere.

We then specialize to the case n = 2 and derive, besides the motion by curvature for the
interfaces, the formula
sin(f;)  sin(fy)  sin(6s)
Pea = Pad = Pbe ’ (5)

which prescribes the angles between three interfaces at a “triple junction” in terms of the

minimum energies ®° it takes to change from phase v to phase 3, with v,3 = a,b or ¢
(see Lemma 1 and Figure 1). Formula (5) is well-known by material scientists working in
the theory of phase transitions (e.g. in grain/phase boundary motion [Mul], [Mu2], [Sm], or
in simple fluid phases in equilibrium [W], [C]). Note that, in the particular case where W

is symmetric, this formula suggests that the angles between the interfaces must be 120°, as



is expected for grain boundaries in an isotropic material. The analysis is further supported
by the results of Baldo ([Ba]) on the I'-convergence problem for the energy associated to
(1), which state that this energy converges to a weighted perimeter energy functional whose

gradient flow is mean curvature motion.

Our analysis provides further evidence for the correctness of the laws of motion that
have been derived by material scientists for the study of three-phase boundary motion (see
e.g. [Mul], [Sm]). Our derivation of the motion law is formal, not rigorous, but we note
that the corresponding calculation for the scalar case has been justified rigorously ([BK],
[DeMS], [ESS]). We also presume that alternative justifications for the laws of motion could
be obtained by other means. For example using arguments in thermomechanics based on

balance of forces and moments along the lines of [AG] (see also [FG]).

In the second part of this paper, we present a simple and general method to obtain
short-time existence (and uniqueness) of solutions for the three-phase boundary motion
model derived in our formal analysis when n = 2. More precisely, we prove local existence
of smooth solutions for the problem of three curves lying in a domain 0 C R?, each moving
by curvature, which meet at a point with prescribed angle conditions. The other endpoint
of each curve meets the boundary 02, also with a prescribed angle. In particular, this
answers a question posed by Mullins about the well-posedness of this problem ([Mul]). The
method we use is based upon linearizing the problem about the initial data and verifying that
the linearized boundary conditions satisfy the “complementary condition” for the resulting
parabolic system (see e.g. [So]). This condition assures the existence of a solution to the
linearized problem which is then used to establish local existence for the full problem via a
fixed point argument. This method easily extends to the case of networks in which there are
many “triple junctions”, and to situations where the physical system exhibits any number of
phases. It also applies to some cases of anisotropic mean curvature motion when the problem
is a non-degenerate second order parabolic problem. To show further the wide applicability
of the method, we sketch the proof of local existence of solutions for another problem in the
theory of phase transitions, namely eutectic solidification ([K],[W]). We study a simplified
model for lamellar eutectics. In this model, two curves (the solid-liquid interfaces) move
normally with a speed whose dominant contribution is proportional to their curvature. As
the two curves evolve, the locus of their meeting point traces out a third curve (the solid-solid
interface) that should maintain a fixed angle with the solid-liquid interfaces at the meeting

point (see Figure 4).



We emphasize that our existence theory is logically separate from our derivation of the
laws of motion. It is fully rigorous but local-in-time. The problem is that when a geometric
singularity occurs, for example when two triple points coalesce, our parametrization of the
problem becomes singular. To get a global-in-time existence theory would require a different
approach, based on some kind of weak solution. In the scalar case the “level-set formulation”
and the theory of viscosity solutions has been used for this purpose with striking success
([CGG], [ES]). So far there is no indication of how to extend that work to problems involving

three or more phases. However see [T] for related ideas.

Several discrete models have been suggested to simulate the evolution of grain growth.
Among these we can cite the Potts model (see [GAG] and references therein), vertex and
boundary dynamics models (see e.g. [CN] and [KNN]), mean-field theories ([FSU]) and
motion by crystalline curvature ([T]). (See also [CHT] for a survey of several approaches to
defining and computing geometric motion of interfaces.) In this regard, we believe that the
model we study in this paper, which is certainly amenable to discretizations, is very likely

to yield valuable numerical results. Research in this direction will be left for further work.
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This work was partially supported by the Army Research Office and the National Science

Foundation through the Center for Nonlinear Analysis.

2 Formal Analysis

In this section, we use a multiple time scales asymptotic analysis to obtain formally the
asymptotic behavior of the solution u = u® of (1)—(3) as ¢ — 0. Specifically, we show that
u® divides ) into regions where u® &~ a, b or ¢ and that the interfaces dividing these regions
evolve normally with speed equal to their mean curvature. In the two-dimensional case, we
also derive a formula for the angles between the interfaces at their meeting point in terms of

a metric involving the potential W and the equilibria a, b and c.

We shall follow closely two papers in which the scalar version of (1)—(3) is studied: the
first one is the paper of Rubinstein - Sternberg - Keller [RSK] where the boundary conditions
are of Neumann type, and the second is the paper of Owen - Rubinstein - Sternberg [ORS]
where the Dirichlet problem is studied. In [RSK] it is formally shown that the interfaces



meet the boundary of  with a 90° angle, while the results in [ORS] suggest that the contact
angle depends on the boundary data h and on the potential W. The essential difference
between our formal analysis and that of [RSK] and [ORS] is the behavior of u® near triple
junctions. Hence we shall modify ideas from [ORS] to study the behavior near triple juntions
and mostly quote results of [RSK] and [ORS] for the study of u® in the interior of € and
near the boundary 0.

First we seek the “outer expansion” in the original time scale. For this, we write u® in
the form of

u® = ugut(m, 1)+ 52u(1’“t($, 1)+ €4ug"t(:1;, 1)+ ... (e << 1). (6)

Substituting (6) in (1) and (3), we obtain

0
S = =YW () (7

ug”(z, 0) = g(2). (8)

Since W is a non-negative potential with minima at a, b and ¢, it follows from (7) that
ug"(z,t) tends to a, b or ¢ as ¢t — oo. For simplicity, we shall assume that lim;_ ., ug*
divides 2 into 3 regions, and we let I'y divide phase a and phase b, I'; divide phase b and
phase ¢ and finally we let I's divide phase ¢ and phase a (see Figure 1). Hence interfaces
generate in this time scale. Subsequently, the diffusion term in (1) becomes large and we
anticipate that these interfaces will evolve. Therefore a better approximation for u® near the
transition layers is obtained by expanding it in a slower time scale. Moreover, we expect
a different asymptotic behavior near 9d€) and near the triple junction. Therefore we must

study the solution u® separately in three regions: near the interior transition layers, where

the interfaces meet 92 and, finally, around the triple junction.

First, we study the interior transition layer through I';. Following [RSK], we introduce

the slow time scale ¢ = % ¢ and rescaled coordinates
52’ = 5_1di($7 0)7 (9)

where d;(x, o) is the signed distance from z to the interface I';. Expanding in these new
variables,

u® = uffi(éi, o)+e¢ uiﬁ((&, o)+ g2 uéﬁ(éi, o)+ ... (10)

5



Next we substitute (10) in (1) with ¢ = 1 and, by carrying the calculation up to second
order, it follows ([RSK]):

2(u6€)5151 V W(UOI) (11)
ull, — aas § — —oo, utfy = bas § — oo. (12)
0
—d, =k 1
60' 1 d1 9 ( 3)

where kg, is the mean curvature of the level sets of d;. Thus the interface I'y evolves in the
slow time scale o according to its mean curvature and the profile of the transition layer is a
standing wave given by the solution to (11) and (12). A similar calculation can be carried out
for the other two interfaces I'y and I's with the same conclusion except that (12) is replaced
by (see Figure 1)

u02—>bas52—> —00, u02—>cas52—>oo

uty, — ¢ as 63 — —oo, uth, — a as & — oo.

Here we make the observation that standing wave solutions arise as a byproduct of work
by Sternberg [S] on I'-convergence for the energy associated to (1) in the case that W vanishes
on 2 vectors. It turns out that the geodesics connecting the local minima of W obtained

using a weighted “distance” functional yield an exact representation for the standing waves.

Lemma 1 Let

o(b) = i 2/ W (p(0) 9 (1)]dt, (14)

pecC?
p(—1)=a,p(1

and let pqi(t) be a geodesic connecting a to b, i.e. a path p which achieves the infimum in
(14). Then there exists a smooth increasing function 3 : (—oo,00) — (—1,1) such that the
curve Yap(01) = par(B(61)) is a solution to (11)-(12). In particular, given a unit vector e,
(2, 1) = Yap (?) is a solution to (1) connecting a to b. The function v, salisfies

|05, 7a0]* = W (Yan),

and

(I)ab = 2/ ’Yab (Sl )d51



This Lemma follows easily from the proof of the Lemma in [S].

Regarding the behavior of u® near 0§, we just recall that in [RSK] it is shown that if
the boundary conditions are of Neumann type, I'; meets 9Q at a 90° angle. In the case of
Dirichlet boundary conditions, u®(z, t) = h(x) on 02, results of [ORS] show that I'; must
meet J) at a prescribed (non-zero) angle which depends only on ~ and on the potential W.

Finally, we study the behavior of u® near the triple junction of the interfaces. To simplify
the argument, we assume from now on that n = 2, i.e. u®(-,1): @ C R* - R™. Recalling
that the interior interfaces evolve in the slow time scale o = %, we let m(o) and 6;, i = 1,2,
denote the meeting point and the angles between the tangent planes to I'; and to I';4; at
m(o). Then the angle between I'y and I's satisfies 65 = 27 — 0; — 5 (see Figure 1). In order
to determine the angles between the interfaces at m(o), we introduce the following systems

of stretched coordinates around m(o)

r—m(o
= 2 )
€
with n; = (&, (;) where (; represents coordinates along the tangent plane to I'; at m(o)

and ¢; is perpendicular to (; (see Figure 2). Next, let 7' be an isosceles triangle with base
perpendicular to I'y as in Figure 2. Since the interior interfaces evolve in the slow time scale

o, we expand u® near ; = 0 in the form

€

u® = ué”(m, o)+e u’in(m, o)+ ...

Using (1), ui® satisfies
2N, uit = V W (uil). (15)

Furthermore, we have the following matching conditions between uj" and uf ([VD]):

Jim g (&, G) = ug (&), (16)

lim*ug’ (&1, G1) = ugi(&), (17)
where lim”* denotes the limit as |(1] and |£;] — oo along the lines which are at some distance

§; from the interface I'; (see Figure 3). We note that from (15), (16) and (17), it follows that

uy is in fact independent of . Since the coordinates (&;,¢;) satisfy

& = —sin(y)& —cos(vi)¢1 and ;= cos(v;)& — sin(y:) G



where 0 < #; < 27 is the angle between I'; and the & -axis, the matching conditions (16)—(17)

can be written as

Jim (6, ) = uii(&) (13)

)

for & fixed. Following ideas from [ORS], we now multiply (15) by &, ui® and we integrate

over T :

//afl dnlz//Qaﬁl ) gluo +2@£1u0 ) C1u6 d?h

Since this can be written as

[ ] 0l i) + 10w = V0 i P dm = [ [ 206, (0 0, u)

using the divergence theorem it follows that
/ST (W (il + 10, uly | — |06, uir 2] vads = — /ST 20¢,ug’ - Ogyug’ vads, (19)

where v = (14, 13) is the outward unit normal vector to 97.

Next, we parametrize these line integrals in the (&, (;) coordinates. The last two sum-

mands of the integrand in the left hand side of (19) become

|0, ug | — |0, ug’ > = — cos(29:) |0, uy |* + 40¢,ug" - Oe,ug’ sin(;) cos(v) + |9, ug"|* cos(27:)
while the integrand in the right hand side of (19) satisfies

—0gug" - Ogug" = |0gug”|* cos(y:) sin(y) + cos(27:) O ug” - O ug” — |Og,ug”|* cos () sin ().

Assuming that 0 < 6; < 7,2 = 1,2,3, and choosing counterclockwise orientation along 9T,
we can write d§; = ds, df; = sin(yz + 0)ds and d&s = sin(ys — 0)ds, where 6 is the angle at
the base of T' (see Figure 2). Now using this change of variables, the matching conditions
(18) and the fact that lim¢,| |8C ul| = 0 for finite energy solutions (this also follows from
the matching conditions since u: is independent of (;), we take the limit as the length R of
the base of T' tends to oo. Since we want to use the matching conditions (18), we need to
consider two domains of integration within each line integral. The first domain lies within
a fixed distance a to I'; while the second consists of those points which are at least a-away
from I';. In taking the limit as R — oo and then as a@ — oo, the line integrals which are

away from I'; tend to zero: indeed the integrands tend to zero since uy* — ug* which, in

8



this time scale, is either a, b or ¢. Therefore taking the limit in this order, we obtain on the

left hand side of (19)
lim lim (W( ")+ |0 ult P — |0, uit 2) vids =

a—00 R—oo aT
[&i 1<

o0 sin(6)
/_Oo {|952Uoz| cos(2y2) + W(uoz)} md&
sin(6)
—/ |353U03| cos(2vs3) + W(Uos)} md&a,

where we used that vy dé; = 0 and the fact that in the R limit {; >> 1 so that we can use
the matching condition (18). Similarly, we obtain for the right hand side of (19)

lim lim — 2 0 u™ - Op U vods =
a—00 R—oo 9 {1 0 Cl 0 2
|¢; 1<

o[ 12 cos()
2/_00 |0, gy | cos(y2) sm(’yg)ism(fy2 =9 dg,
0o cos(0)
=2 [ el costan) sinas) s,

where this time the integral along d¢; vanishes in the limit since v, = 270°.

In view of (19), it follows

sin(6)

/_Oo [|8§2u02|2 cos(272) + W(UOQ)} md&
00 Sll’l(g)
= [ [0t cos(2) 4 W) o e (20)
cos(f
= —2/ |0, ul|? cos('yz)sm(fm)ﬁdfg

cos(f
<2 [ ok cos(on) sint)



Next we obtain the angle conditions at the meeting point. Indeed applying Lemma 1 to

(20) yields

sin(6) sin(6)

C082(72>mq) C(c) — COSZ(VS)_Sin(ivg — 9) (I)Ca(a) =
i 7(:08(0) be(¢) — cos sin 7&8(0) “(a
— cos(7v2) Sm(fh)sin(’yg +0) ®*(c) (73) (VS)SiH(’YS ~9) o*(a)

which after simplification, gives

cos(72) 8%(c) = — cos() % (a).
Further, since v, + 7 = 01 and 73 — 72 = 0, it follows that 73 = 37” — 65 and we conclude
sin(6;) CI)bc(c) = sin(f3) °*(a). (21)
If we rotate T' so that its base is around I'y, we can similarly derive the equation
sin(fz) ®“*(a) = sin(f,) CI)ab(b). (22)

Therefore (21) and (22) give the angle conditions between the three interfaces. We note
that (21) and (22) are the well-known formulae for the angles between three interfaces in
grain/phase boundary motion ([Mul], [Mu2], [Sm]), or in simple fluid phases in equilibrium
(W], [C]), where ®°®(b) represents surface tension of the interface between phase a and b.
Also note that if W is symmetric ®*(a) = ®°(b) = ®*(c) and (21)-(22) imply that the

interfaces must meet at an angle of 120°.

The case in which one of the angles 8; > 7 while the others are positive, cannot occur:
indeed one can easily check that (21) and (22) would continue to hold, which is impossible
since ®77(v) > 0 for 3 and 7 equal to either a, b or . On the other hand, if one of the angles

vanishes the limit problem becomes ill-posed (see Remark 2).

In conclusion, it follows from (13) that the interfaces I';, i = 1,2,3, evolve normally
according to their mean curvature and the angles they form at triple junctions are given
by (21) and (22). In the two dimensional case, parametrizing I';, 7 = 1,2, 3, in arc-length

coordinates, we have shown formally that the solution u® of (1)—(3) asymptotically yields

10



the following three-phase boundary problem for the curves I';:

[y = Tiss in Dy ={(s,1)/0<s<Li(t) } (1=1,2,3)
I(s,0) = T9(s)

Fls FZS
. = cos(f at s =0
Tl ]~ )
FQS FSS
. = cos(f at s =0 23
|F25| |F35| ( 2) ( )

Fl(oat) = FQ(Oat) = FB(Oat)
I'; L oQ at s = L;(t), in the case of Neumann boundary conditions,
L(T';, 0Q) = «; at s = L;(t), in the case of Dirichlet type boundary conditions,

where 0 < §; < 7 and «o; # 0.

3 Short-time existence

In this section, we present a local existence result for the three-phase boundary problem (23)
derived in the previous section. While arclength parametrization is geometrically convenient,
it will be easier, from our perspective, to write the equations in coordinates in which the
spatial and time variables are independent. In order to find the simplest formulation, let
us first suppose that the curves are given by the graphs of functions v, 5 = 1,2, 3, and let
(u(t), v (pu(t), 1)) and (1;(t),v’(1;(t),t)) be, respectively, the meeting point of the three curves

and the intersection point of each curve with 9Q. Then (23) can be written in the form

e — ) <y <I(t
Ut 1 (’1);)2 ILL( ) SY> 1( )
i = viy ; () <y<ult) j=23



ol T ey ) 2ty = 2
(L)  (=l—v) o
ooy =1, =gy 02 aby=pll)

where

00N = {(x1,73) € R*|b(x1,x2) = 0}.

Local existence and uniqueness for this “free boundary problem” can be established directly
via a fixed point argument (in fact the proof becomes easier if one considers the system of
equations satisfied by w’ = vé) However a more straightforward formulation of the problem
(23) which does not involve free boundaries can be derived. In fact, if the position vector for
'y is given by (ui(x,t),uz(z,t)) (x € [0,1]) and if uy is invertible, then letting y = uy(x, 1)
and v'(y,t) = uy(ui'(y,t),1), one can easily show from (24) that p; = (u;,uy) satisfies

Plzz _
plt'lem'NIZkla (25)

where Ny is the unit normal to I'y and & is its curvature. Since (23) does not prescribe the
tangential velocity, a choice must be made, and motivated by (25) it is natural to consider
the system

Pjt = |§]ITQ T € [071]7 .7 = 17273
iz

pj(l',()) :p?(.r)
p1(07t) = p2(07t) = pS(Ovt)

plz‘ p2z
. = cos(f at z =0 26
pl Tpay (26)

12



D2z D3z

. = cos(# at t =0
il el
Piz_ _’(p]) = cos(a;) at v =1
izl |T(p;)]
b(p;) =0 at =1,

where

—

I'(p;j) = (=0x,b(p;), Ox, b(p;))
is tangent to 0Q at p;(1,t). If we let

P11 = (U17U2)7 P2 = (U37U4) and p3 = (U57U6)7

then (26) is equivalent to the following system of parabolic equations for the u;’s:

1 .
g P1|? ! 7
1 .
e |P2z|2uil‘l‘ J =34
1 5.6
Ujt = 75 Ujrx =
Jt |p3$|2 J J )

uj(e,0) = u)()

J

uj(0,1) = ujsa(0,1) = u;ja(0,1) j=1,2

U1pUzy + UzzpUsy — c08(01)|prz||paz] = 0 at =0

Uz Usy + Uszter — cOS(02)|paz||paz] = 0 at =0

—u1200,b(p1) + 12,00, b(p1) — cos(en) |pra|T(pr)] =0 at z =1
B, b(ps) + s blps) — cos()lpacl|T(p) =0 at =1
—ti5,0,,b(p3) + s, b(ps) — cos(as)|ps. || T(ps)| =0 at @ =1
b(p;) =0 atx=1 j5=1,2,3.

We shall prove the following theorem:

13



Theorem 1 Let u3(z) € C***([0,1]) (0 < o < 1) satisfy the compatibility conditions for
(28), and assume that OQ is C***. Then if a; # 0, 7 =1,2,3, 0< 6; <7, j = 1,2, and
6 = minycjcsinfy [pl,(z)] > 0, there exists T = T(|ud(z)|a4a; |bla4a,d) such that (28) has a

unique solution in C*+1+3([0,1] x [0, T]).
By reparametrizing, it follows:

Corollary 1 IfT';(s,0) € C***(Dy), and satisfy the boundary conditions in (23), then (23)

has a unique solution in C***'*3(Dy).

Remark 1 The theorem also holds if the angles 8; between the curves, and the angles «; be-

tween the curves and the boundary 9€, change in time as long as 6;(t), a;(t) € C’HTQ([O, T)).

In order to keep the presentation simpler, we choose §; = 0; = 120° and a; = 90° in what
follows. The modifications necessary to treat the general case are simple and will be pointed
out later on. The idea of the proof of the theorem is to first linearize the system (28) about
the initial data, use the classical theory for parabolic systems (see e.g. [So]) to establish
existence for the linearized system and then obtain local existence for the full problem by

means of a fixed point argument. More precisely, if we let
X; = {ue 7 2(0,1] x [0, T))| |ulzga < M and u(z,0) = wi(z)} 1<5<6,

we seek a fixed point of the map

which associates to u; € X, the solution u = Ru of the linearized system:

ujt = Djtijor = fj (29)
uj(z,0) = uj(z) (30)
where (cf. (27), (28))
1 S 1 1 ). S
W for ] = 1,2 (|231I|2 |p(1J$|2) Uz for ] = 1,2
Di={ gp for j=34 andfi=1 (g - ) ise  for j=3.4 (31)
f . ~ .
W for 7 =5,6 (Iﬁslmlz) — @) Ujpy for 7 =05,6

14



with the linearized boundary conditions:

Bi(0,6,u) = u;j(0,1) —uj42(0,1) =0 1 <5 <4

Lo [Pl 1o P2l
Bs(0,t,u) = [ud, 4+ —ud 725 ) uge + | ul, + —ud 25 ) ug,
) = (it gt ) e (o gt )

1, 1 I) ( 1o [p%,]
n uoI_I__uoz 2 ) e + uogg_l__uoz )
( ST N S

bs1t1z + bsatar + bssts, + bsatiay

= ®(p1,p2)

1 o |p3.] 1 o[PS
uor_l_ _uow sal ) on—l- _uow sal )0,
( 2 ph, | o027 Pl |

Lo [Pl 1o P2l
0 0 2z 0 0 2z
(ot ) e+ (o o)

bestis: + beatar + bests: + besties

BG(Ov tv u)

= W(p2,ps3)

and

Bj(l,t,u)Epjw-T(p]):E'(ﬁj) j:17273
Biya(1,t,u) = Db(pj) - pj = Ejalpy) J=1,2,3.

The functions ®, ¥ and = are defined by
o _ _ L _ =
@ (1, p2) = —P1s(0,1) - P20 (0, 1) — S1P1o(0, )[[P20(0, )] + B5(0, ¢, w)

- _ _ L _ -
W(p2, ) = —P22(0,8) - P (0,) — 5[P20(0, 1)]|P (0. 8)] + Be(0, ¢, )

and

=i(p5) = —pia(1,0) - T(p;(1,8)) + Bj(1,t,u) j=1,2,3
Zia(pi) = =b(p;(1,1)) + Bjgs(1,t,u) j=1,2.3.
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(32)

(33)

(34)

(36)

(37)



(Here and throughout, an expression with a bar above means that u; is replaced by u; in the
expression. Also to simplify the notation, we shall write C?** instead of C?T*'+2([0,1] x
[0,77]), and | - |244 for the norm in C**t*.)

We shall show that in fact, for a suitable constant M and small enough 7', the map
R is contracting. The success of this approach depends solely on the uniform parabolicity
of the system (28) (for small time) and the fact that the boundary conditions (32)—(35)
are “complementary” for the equations (29) ([So, p. 11]), i.e. that the system (29)-(35) is
well-posed.

Proof of Theorem 1: First we show that there exists a solution in C** for the problem
(29)—(35). This follows from the classical theory of parabolic systems. In fact, (29)—(35) has

a unique solution (u;) satisfying

6 6 6 6
Z |uj|2+a < Cs (Z |fj|a + Z |u?|2+a + |(I)|1+oz + |\I}|1+a + Z |Ej|1+a) > (38)

7=1 J=1 =1 7=1

provided the boundary conditions (32)—(35) are “complementary” ([So, p. 121]).

To describe the complementary condition at the meeting point, i.e. at =z = 0, let

B(0,t, 0z, 0;) be the matrix of boundary conditions at = 0, i.e.

B(0,t,0;,0;)u(0,t) = (0,0,0,0,®,¥) where v = (v;) j=1,---,6.

Then
[ 1 0 —1 0 0 0
0 1 0 —1 0 0
. 0 0 1 0 —1 0
B(()?ta”—ap) - 0 0 0 1 0 _1
in51 in52 in53 in54 0 0
L 0 0 in63 in64 ’L'Tb&r, ’I.,’7'b66 1

where b;;, 1 = 5,6, 1 < j <6, are the constants defined in (33)-(34). Let L(z,t, d;, d;) be the
matrix of the system (29) and let L = det L(x,t,i7,p) = [[;(p + D;7?), and ,/j(:E,t,iT,p) =
LL (z,t,iT,p). Then Lisa diagonal matrix and the element in row & is [T;(p + D;7?).

We note that the parabolicity condition is fulfilled since D;r? > L E T2 (see

9]
= max;<i<3 sup, |p},

16



[So, p. 8]). The complementary condition at x = 0 is fulfilled if the rows of the matrix

A

A(0,t,ur,p) = B(0,t,i7,p)L(0,¢,i7, p) are independent modulo the polynomial

[I(r —i\/p/D;) when R(p) > 0 and |p|* > 0 (see [So, p. 11]).

J

We must therefore verify that the homogeneous system of 6 equations with 6 unknowns given
by
(a,b,c,d,e, f)- A0, t,im,p) =0

has the unique solution (a, b, ¢, d, e, f) = 0, mod [1;(7 —1\/p/ D;). Explicitly, we must verify

that, mod [T;(7 — iy/p/D;),

(a+ eirbs) H(T —1iy/p/Dj) =0,

i#1

(b+ eirbsy) H(T —1y/p/Dj) =0,

J#2

(—a+c+eitbss + fibes) H(T —iy/p/Dj) =0,

i#3

(=b+d+eitbss + fiTbes) H(T— i/p/Dj) =0,

J#4

(—c+ firbess) H(T —iy/p/Dj) =0,

i#5

(—d+ fitbes) [1(m —iv/p/D;) =0,

i#6

has (a,b,c,d,e, f) = 0 as its unique solution or, equivalently, that (a,b,c,d,e, f) = 0 is the

only vector satisfying

(a — € p/D1b51) = 0,

17



(b—e

P/Dzb52) =0,

(—a+c— \/M(e bss + [ bes)) = 0,

(—b—|—d— p/D4(€b54—|—fb64)) :0,
(—C - f p/DSbGS) =0,
(—d —f P/DGbGG) =0.
Thus, it suffices to show that
1 0 0 0 —y/p/Dibs 0
0 1 0 0 — p/Dzb52 0
det —1 0 1 0 — p/ng53 — p/ng(;g
—1 0 1 — p/D4b54 — p/D4bG4
0 0 —1 0 0 —/p/ Dsbes
L 0 -1 0 - p/DGbGG

£ 0. (39)

iFrom (39) and using that Dy = Dy = po;lr“ D3 =Dy = p+|2 and Ds = Dg = ﬁ, we find

that the value of the determinant is

—plpY,| P9, [Pos

29V
8

£0.

In the general case of arbitrary angles §;, it is easy to check that the condition for the system

of boundary conditions at * = 0 to be complementary for the parabolic equations (29) is

given by

(1 — cos(01))(1 — cos(2))(sin(#1 + 02) + sin(fy) + sin(6s)) # 0,

which is satisfied if 0 < §; <7, j =1,2.

18



The complementary condition at x = 1 is easier to verify as the system decouples into

three 2 x 2 subsystems. When a; = 90°, the matrix B(1,¢,u7, p) is given by

[ 0a,b(p))  On,b(ph) 0 0 0 0
—170,b(pY) 170, b(pY) 0 0 0 0
o 0 0 0z, b(p3) 0w, b(ph) 0 0
B(1,t,ir,p) = 0 0 —ir8,,b(p3) i, b(pY) 0 0
0 0 0 0 0z, b(ps) 0, b(pS)
L 0 0 0 0 _iTamb(pg) ”—aﬁb(pg) |

so that the rows of B(1,t,:7, p)/j(l,t,ir, p) are independent modulo [];(7 — iy/p/D;) if the

determinant of

[ 02, b(p?) 9z, b(p?) 0 0 0 0
V 5702,0(0Y) —/35-0:,b(p7) 0 0 0 0
0 0 LB Db 0 0
0 0 VB 0m,0(p3) =/ 3502, b(pY) 0 0
0 0 0 0 0z, b(p3) 02, b(p5)
i 0 0 0 0 VB 0,0(03) —/$-02,0(p3)
1S non-zero.
But using that Dy = D;, we find
81‘15(}7(1)) amb(p(l)) P 0\ 2 0\ 2
et | Eomsiuty Bt | = 7 (@00 + @000

% 07

and similarly for the determinant of the other 2 x 2 submatrices. Thus, the Neumann
boundary condition (35) is complementary. In a similar way, one can show that the bound-
ary conditions at x = 1 in (28) (with arbitrary angles «;) are complementary as long as
(00, 6(p2), 00, b(PY)) - 9, # 0, 5 = 1,2,3. This means that the complementary condition is
satisfied at @ = 1 if o; # 0, i.e. as long as the curves are not tangent to 9. Thus given

u; € X;, 5 =1,..,6, there exists a unique solution to (29)—(35) satisfying (38).
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Next, using (38), we show that the operator R maps H?Zl X; into H?Zl X;. For this we
first find a bound on the C* norm of fi; similar bounds hold for |f;|., 2 < 5 < 6. Using
the convention that the C**® norm of a vector is the sum of the norms of its components, it

follows that for u; € X;, we have |pj|24o < 2M and hence

0

)
D) | > 5 fOI‘TStO:to(M,g), (40)

Pjz| > |

where § = min; inf,, [p9,(z)|. Therefore, using the identity

1 1
RO (f?(@)f(t) ! f<o>f2<t>> 1)

and that ||}51I| - |p(1)a;|| S |}51I _p(lJI| S |ﬁ11’ _p(l)a;|00 ; We have

C, _
S §|p1z _p(1)95|0Z . (42)

‘ 1 1

EE

Using (31) and (42), it follows that for T' < ¢,

|f1|oz < (‘ ! - !

ERRE

) |t1]24a
o

< 05|ﬁ1|2+aT% |t1] 240 (43)
< CsM*T3

which can be made arbitrarily small.

Next, we find a bound for the C'** norm of the function ® defined in (36) (a bound for
U is obtained in a similar way). For this, we shall use the following identity which holds for

any two functions hy and hy defined on [0, 7]

20



with our convention that A9 = h(0) and A9 = hy(0). Then

L I, -
P14+ = | — Prz P2w — §|P1a:||P2z| + Bs|ita

_ , 1., B 1

e}

— n 7 o o _ B
< |P1|2+a|P2|2+a(T1+ + 277 ) + |(|pre| — |P(1)g;|)(|]72z| . |sz|)|1+a
n 1) Ho . = a 1ta
< Clpilatalpelosa 2 ‘|‘C|P1|2+a|p2|2+a(T1+ + T
< OMTS,

where in the first inequality we have used the compatibility conditions for the initial data.

On the other hand, at = 1 we have (c.f. (37))

Eilita = =P T(o) +pio - TR)|

Lo
pio [ DTOR + (1= X)) (s - )

14+o

IN

C(|bloa)|p1|24n(T+T72)
< O(|blaya) MPT

with similar bounds for |Z3|;44 and |Z3]144. Finally, since b(p{) = 0

Zahita = | =0(p1) + DO(pY)p1 140
0\, 0 0\/ 0 ! 0 N 0
< |IDb(py)pili+a + [Db(p7)(P1 — P)li4a + I/0 Db(Ap) + (1 = N)p1)(p1 — p7)dA 140
< DB g+ C([Blage) MOT'E
and similarly for |Z5]14+4 and |Z¢|144. Putting this together in (38), we find for 7' <

6 6 3

i=1 i=1 i=1
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Hence, choosing
SIS \
7=1 J=1

we conclude that there exists a time t; = t1(M, |b|244,0) < o small enough so that

Z [tjlora <M for T < ty, (45)
i.e. R maps [] X; into itself.

Next we prove that the map R is a contraction. Let (u;) and (v;) € [1; X; with T <4,
let (u;) = R(u;) and v; = R(v;) be the associated solutions to the linearized problem (29)-

(35) and let w; = u; — v;. Moreover, let p;, q;, 7 = 1,2,3 be the associated position vectors,

(g1 = (v1,v9), etc.) and let Z; = p; — g;. Then the w;’s solve
wjt = Djwjer = g; (46)

where D; is as in (29) and

1 1 N (1 1 \a .
( 'pop — ) e — (ap 7 7) Vise = 1,2

x
1 1 — 1 — .
e _ — Ui — | — — Vs =3.4
9gi (|p2m|2 |pgm|2) jre (|2m|2 |qgm|2) jes ] =3,
1 1 — 1 1 — N
1 Ui — v; = 5,6
(|p3$|2 |pg$|2) jrz (|q3m|2 |qgm|2) ez J 10

with the corresponding boundary conditions

B;(0,t,w) = w;(0,t) — w;j42(0,2) =0 1<5<4
B5(0,1,w) = bsjwiy + bsowas + bsswsy + bsawar = P(P1s, Par) — (G Gou)
Bg(0,,w) = bezwss + beawas + beswss + beswer = YV (Pas, P3z) — V(G2s, G3c)

and

Bj(1,t,w) = Zj - T(pY) = Z5(p;) — Zi(45) j=123 (48)
Bjys(1,t,w) = Db(p}) - Z; = Ejya(py) — Sjesla;) 5 =1,2,3.
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Since this is a linear parabolic system that satisfies the complementary conditions and

the compatibility conditions, we shall again use Schauder-type estimates to show that
6 1 6
E |wjl24a < 2 E |©0jl2+a for T' < t,,
=1 i=1

where 13 < ¢y and ¢; is as in (45).

First using (41) and (47), we find a bound for g; in C'*:

T o 1= 15 ) Vizz
o |p1x|2 |C]1I|2

< Cs5 (T |pr)2sal@t]24a + |01]240] Z1s]a)
< Cs MTE|Zi|a4a.

1 1
|gl|a S ‘(— - —) C'lezz
TP R

o

A similar bound holds for g;, 2 < 7 < 6. Next, we use (44) and the identity
(b1 = hY)(ha = h3) = (1 — 72 = J2) = (k1 —j1)(ha — ja) + (b1 — 51)(j2 — 53)
+(hz = j2) (1 = 51)

to obtain, at x = 0,

|(qlx - q(l)x)(q21? - qu) - (ﬁlx - p(l)x)(ﬁQI - pgm)|1+a
| Z12 202 140 + | Z10(P2x — Pog) 140 + | Z22(Pra — Pia) 140

1+

< CM(|ZI|2+a + |Zz|2+a)TTa-

|q)(ﬁ1937p21‘) - (I)(lem q2x)|1+oz

IN

The same type of bound can be obtained for the term involving ¥. On the other hand at

r=1,

Ei(p1) = E1(@) e = (@ —p)T(p1) + (T(@) = T(1)) @1z + T(09) (Pre — 1) 14
4 ! 2 0 0
< 12 [ DTOR -+ (1= N1 = 9N

1 =
+|/0 DTG + (1= Np) (@ — P1) )40

1—

< C(|blaga)| Zi|2raMT =
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A similar bound holds for |Z3(p2) — Z2(G2)|14a and |Z3(p3) — Z3(¢3)|14a. As for =4, we have

Z4(p1) — Ea(@)li4a = [6(q) —b(p1) + Db(PY)(p1 — G1)]140

1 _
= | [ Db + (1= Np1)(@ — ) + Db(p) Zi 1

1

< O|blata) | Z1]a4aT 7

Again similar bounds hold for the terms involving =5 and =¢. Therefore, putting this together

and using the Schauder estimates for (46), it follows

6 6
Y lwilzra < CsC(1bl2ga, S)MT = |05 24a-

i=1 i=1

Thus R is a contraction for

T S tZ(Ma |b|2+a7 5)
where t, 1s such that

CoC([Blagars ) ME,E < 1/2. O

Remark 2 A word is in order to justify the possible non-existence of a solution when either
a; = 0 or §; = 0. We show this in a model case: we assume that I'y is a graph so that its
position is given by (z1,u) where

Uy oy
—_nn 49
e 1+ ufjl (49)

Let z; = s(t) denote the intersection of I'y with the boundary of @ = {x; > 0} and let

a1 = 0. Then u > 0 and the boundary conditions for u are
u(s(t),t) =0
and
Uy (S(t)7 t) = 07
which contradict Hopf’s Lemma. A similar argument works at the meeting point of the three
curves: for the model problem in this case, one can take one of the curves to coincide with

the zi-axis and the other two to be graphs symmetric about this axis. In this model, the

graphs stay symmetric, and we are in the same situation as above.
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As can be seen from the proof of Theorem 1, the method used to obtain local existence
is simple and quite general. Indeed it is enough to show that the problem is parabolic and
that the linearized boundary conditions are complementary. Therefore it can be used in a
wide variety of physical systems. As a further example we consider another problem in the

theory of phase transitions, namely eutectic solidification ([W], [K]).

In lamellar eutectics two solid phases grow into a liquid phase. We model this process
by considering two curves (the solid-liquid interfaces) meeting at a point with a prescribed
angle, moving normally with a given speed whose dominant contribution is proportional
to the curvature of each curve. As the two curves evolve, the locus of the meeting point
traces out a third curve (the solid-solid interface) that should maintain a fixed angle with
the solid-liquid interfaces at the meeting point (see Figure 4). The system of equations for

the position vectors p; of these two curves is therefore given by

Pis|?

Pit = | —I'a(matapjapjr-) T € [071]7 ] = 172 (50)

pj(l’,()) = p?(l’)
p1(07 t) = pQ(Ov t)

Pro_ Dut cos(f;) atxz=0

|P1z| |p1t|

Pie  Pro _ cos(f; +03) atx =0
|p1z| |p2x|

Piz_, _’(p]) = cos(a;) atx =1
Piz| | T(p;)]

b(pj)=0 atz=1,

where T and b are as before, 0 < #; < 7 and a is any smooth function. In a very similar
way as above, we can prove short-time existence and uniqueness for this problem as long as
a; # 0 and 6, + 0, # 7. Since the proof is similar to that of Theorem 1, we will only give
a sketch of the proof. Also, for the sake of simplicity, we will only consider the special case

that a = 0 since it is clear that the argument works equally well for any smooth function a.
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Sketch of proof: The main difference with the system (26) is that the boundary con-
ditions at 2 = 0 contain time derivatives. To overcome this difficulty we shall replace pj; in
the boundary condition at = 0 with the help of (50) and study the problem satisfied by

g; = pjz around z = 0. The system of equations for g; is:

9jza q; " Gz
— 4Gz . (51)
j? g

qjt =
|9

To find the boundary conditions at the triple junction, we observe that pi:(0,¢) = p2:(0,1)
so that using (50), we find:

Qi 92z
|C]1|2 N |Q2|2 ate =0 (52)
Moreover
Pt o Plzz
|p1t| |p1rr| ’

and hence the other boundary conditions at * = 0 become

1 qiz
- . = cos(f at z =0 53
ol Tl — ) (53)

i . q2 COS(&l —+ 92) at z = 0. (54)
a1 |CI2|

This is now a second order parabolic system with boundary conditions involving only ¢ and
q.. If we linearize (51)-(54), we can show that the boundary conditions at the triple junction

are complementary provided that the determinant of the matrix

—D\/pD, 0 —/pD2(uf — COS(&l)\/D_lllq? |u(1)I) VD1 Dau§ — cos(8; + 65) Dyuf
0 —DipDy  —/pDy(uf — cos(6 )\/D—11|q(1) |ugz) V' D1 Dyu — cos(8; + 65) Dyul

—\/leDQ 0 0 —\/ Dlu? + cos(01 + 92)\/ Dgug
0 —\/leDQ 0 —\/ Dlug + cos(01 + 92)\/ Dgug

. 1 1
is nonzero. Here Dy = i Dy = o = (ur,uq) and gz = (us, uq).
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The value of the determinant is

\/E|q§|2 |qé|3 sin(6y)(cos(0; + 03) — 1)(cos(0;1) + cos(bs))

and hence the boundary conditions at the triple junction are complementary as long as

01—|—027£7T.
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