A Few Surprises Yet
in Steady 2D Topographic Wave Flows

> nonlinearity & rotational influences on wave generation

> a rotating version of Long's theory
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Linear Theory: Tiny Rossby Number

Quasigeostrophic Flow Over A Ridge
> small height gaussian ridge (A = NH/U = 0.25)
> predominantly balanced QG flow (R = U/fL = 0.25)

> very weak wave anomalies near leeward surface (Pierrehumbert, 1984)

linear theory: isentropes (R = 0.25, A =0.25)
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Linear Theory: Small Rossby Number

Appearance of Waves

> steady uniform flow, constant stratification
> intermediate case: QG summit flow with short waves (R = 0.50)
>

development of downstream (dispersive) wavetrain

linear theory: isentropes (R = 0.50, A = 0.25)
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Linear Theory: Intermediate Rossby Number

Fully Developed Wave Field

> strong waves with similar scale to QG summit flow (R = 1.0)

> significant wave radiation aloft

linear theory: isentropes (R = 1.00, A = 0.25)
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Linear Theory: A Singular Numerical Problem

Fourier Integral Solution (Queney, 1947)
2 o'} .
b(z,2) = — Real { / e/ k)2 dkz}
0
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Buoyancy Anomaly

> linear waves with rotation, stratification & topography

-/42 bra + R_2 brz + brgzz =0 b<$7 O) = -
> 2D linear dispersion relation gives a singular exponent at k = R~1
( Ak
——————  for 0<k<R ' (vertical decay)
VR — k2
m(k) = 4 "
j———o—— for R '<k<oo (outgoingwaves)
| VR 2 k2

Singular Integrand ... ... leads to Aliasing Errors
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(x,2)=(-T4m) Lo [
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decay 1R wave 1/R

> rotating wave case prone to severe numerical Fourier errors
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Three Questions

a: Is There an Analog to Long's Theory that includes Coriolis Rotation?
> Long's theory (1953) for buoyancy anomaly
> steady, nonlinear & non-rotating flows are obtained exactly via linear Helmholtz solutions

— no obvious extension to include rotation

b: What is the Nature of Pierrehumbert’s Finite R Singularity?
> semi-geostrophic approximation: Pierrehumbert (1985)

> SG solutions have singular breakdown at finite Rossby number

— a true finite amplitude flow transition, or merely a manifestation of SG approximation?

c: How can Waves be Generated at Small Rossby Number?
> Pierrehumbert/Wyman (1985) & Triib/Davies (1995)
> wave generation by finite amplitude ridges at small R
> relaxation of time-dependent flow computations

— how does nonlinearity circumvent quasigeostrophic balance?



a: Long's Theory for Non-Rotating Topographic Waves

An Exact Nonlinear Theory for Buoyancy
> steady, non-rotating & hydrostatic/nonhydrostatic (Long, 1953)
> 2D helmholtz equation: stratified (A = N H/U) & nonhydrostatic (52)
A2b4boy + 62 A% =0 5 b(a, ) =0
> downstream waves derive from radiation boundary conditions

— except hydrostatic waves (5°=0) are nondispersive
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> nonlinear fluid system reduces to a single equation for buoyancy




Isentropic Coordinates

2D Primitive Equations

>

>

nondimensional: steady, rotating & nonhydrostatic

potential temperature 8 as vertical coordinate (6, = 1/zp)

Du —R ‘v = = M, — 52 zx Dw
Dv +R ‘u = 0

52 zg Dw + z = — My
Dz — Aw = 0

Montgomery potential: M = ¢ — z60
steady 2D advection: D = (1 + A u) Oy

2D divergence: zgugy — 25 ug + wy = 0

Steady Streamline Property

>

divergence + thermodynamic — {(1 4+ Au) zg}y =0
— squeezing isentropes (streamlines) accelerates flow
velocity relations: 1 + Au = A/zg ; w = 2zz/2p
across-ridge flow: A2 vy = R (29 — A)

eliminating M through vorticity gives . . .



A Master Equation for Buoyancy

Vertical Displacement Equation

> includes both f-plane and non-hydrostatic effects

A3 (14 5222
2 z z
0 xxh 0/ xxx

> surface condition: z(x,0) = —A & radiation BCs

> equivalent to Long's equation without rotation (R_2 — 0)

Hydrostatic Buoyancy Equation (6% = 0)

>  constant stratification: z = A (0 — b(x,0))

~ 1/ 3—2by o
.AQb + R 2b99—|—b 99:__(—b9>
o v 2\ (1 —=b9)2 7).
> surface condition: b(x,0) = — & radiation BCs

> linear Queney operator in isentropic coordinates = nonlinearity




b: Nonlinear Flows

Isentropic Coordinate Singularities

>  breakdowns in coordinate inversion of z = A (0 — b(x, 0))

1 1 { oo isentrope collapsing, u — oo

0 = —_— = —— . )
© zg A(l — by) - 0  isentrope overturning, u — 0

Semigeostrophic Approximation

> small R extension of quasigeostrophy: Robinson (1960), Pierrehumbert (1985)
> SG truncation of hydrostatic master equation

A2 brr + R 2 bgg = 0 ; b(x,0) = —

> isentrope collapse must occur above -dependent critical value of R.A

Enhanced Wave Generation & Singularity Suppression?

> approach to collapse invalidates SG approximation, as nonlinearity must become large

> does nonlinearity ultimately suppress collapse singularity through enhanced wave generation?
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c: Nonlinear Waves at Tiny Rossby Number

Nonlinear Wave Generation
> moderate height gaussian ridge (A = NH/U = 1.00)
> tiny Rossby number flow (R = U/ fL = 0.25)

> time-transient computation to steady state
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> how are these waves generated?

Epifanio
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Nonlinear Waves at Small & Moderate Rossby Number

Nonlinear Wave Enhancement

> moderate height gaussian ridge (A = 1.00)
> Rossby number flows (R = 0.50,1.00)

> time-transient computation to steady state

R = 0.50 R = 1.00

> wave amplitudes approach overturning as R~

Epifanio
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Nonlinear Wave Processes

Generation at R = 0.25

> iterate on nonlinearity in hydrostatic master equation: b*'%(z, 0) — bV (z, )

(1—59)

1 3 — 2bo
9
A%by, + R by + biygp = ( ——L (bp) )
xxb

linear solution: b°(z, 6)

linear iterate: isentropes (R = 0.25, A = 1.00)
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waves after two nonlinear iterations: b (x, )

second correction: isentropes (R =0.23, A = 1.00)
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> numerical process overwhelmed by noise beyond two iterations



Generation & Enhancement

Nonlinear Corrections
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>

15 correction: generation

— wavetrain downstream & aloft

ond 5rrection: enhancement

— waves intensified aloft

preliminary computations

— fourier noise upstream
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Nonlinear Waves

Possible Nonlinear Mechanisms

>

nonlinear modification of local Rossby number

— enhanced topographic wave generation at ridge summit
— modification of wave propagation (rays) in interior
nonlinear wave generation in interior?

total nonlinear corrections (two iterations)

nonlinear buoyancy correction (R = 0.25, A = 1.00)
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Summary

Master Equation for Buoyancy

> single equation for 2D topographic wave flow spanning non-hydrostatic to QG regimes

> quantitative tool for understanding nonlinear wave processes

> key issue: stability & accuracy of numerical solves

one iteration at R = 0.50

first correction: buoyancy (R = 0.50, A = 1.00)
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time-dependent computation

Epifanio & djm
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