
A Few Surprises Yet

in Steady 2D Topographic Wave Flows

. nonlinearity & rotational influences on wave generation

. a rotating version of Long’s theory
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Linear Theory: Tiny Rossby Number

Quasigeostrophic Flow Over A Ridge

. small height gaussian ridge (A = NH/U = 0.25)

. predominantly balanced QG flow (R = U/fL = 0.25)

. very weak wave anomalies near leeward surface (Pierrehumbert, 1984)
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Linear Theory: Small Rossby Number

Appearance of Waves

. steady uniform flow, constant stratification

. intermediate case: QG summit flow with short waves (R = 0.50)

. development of downstream (dispersive) wavetrain
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Linear Theory: Intermediate Rossby Number

Fully Developed Wave Field

. strong waves with similar scale to QG summit flow (R = 1.0)

. significant wave radiation aloft

d
jm

. as R ↗, waves grow in amplitude (exponentially) & wavelength (linearly)
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Linear Theory: A Singular Numerical Problem

Fourier Integral Solution (Queney, 1947)

b(x, z) = −
N2

π
Real

{∫ ∞

0
ĥ(k) eik x em(k) z dk

}

Buoyancy Anomaly

. linear waves with rotation, stratification & topography h(x)

A2 bxx +R−2 bzz + bxxzz = 0 ; b(x, 0) = −h(x)

. 2D linear dispersion relation gives a singular exponent at k = R−1

m(k) =
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for R−1 < k < ∞ (outgoing waves)
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. rotating wave case prone to severe numerical Fourier errors
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Three Questions

a: Is There an Analog to Long’s Theory that includes Coriolis Rotation?

. Long’s theory (1953) for buoyancy anomaly

. steady, nonlinear & non-rotating flows are obtained exactly via linear Helmholtz solutions

→ no obvious extension to include rotation

b: What is the Nature of Pierrehumbert’s Finite R Singularity?

. semi-geostrophic approximation: Pierrehumbert (1985)

. SG solutions have singular breakdown at finite Rossby number

→ a true finite amplitude flow transition, or merely a manifestation of SG approximation?

c: How can Waves be Generated at Small Rossby Number?

. Pierrehumbert/Wyman (1985) & Trüb/Davies (1995)

. wave generation by finite amplitude ridges at small R

. relaxation of time-dependent flow computations

→ how does nonlinearity circumvent quasigeostrophic balance?
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a: Long’s Theory for Non-Rotating Topographic Waves

An Exact Nonlinear Theory for Buoyancy

. steady, non-rotating & hydrostatic/nonhydrostatic (Long, 1953)

. 2D helmholtz equation: stratified (A = NH/U) & nonhydrostatic (δ2)

A2 b + bzz + δ2A2 bxx = 0 ; b(x, h(x)) = 0

. downstream waves derive from radiation boundary conditions

→ except hydrostatic waves (δ2=0) are nondispersive

K
le

m
p

&
L
ill

y,
1
9
7
9

. nonlinear fluid system reduces to a single equation for buoyancy
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Isentropic Coordinates

2D Primitive Equations

. nondimensional: steady, rotating & nonhydrostatic

. potential temperature θ as vertical coordinate (θz = 1/zθ)

Du − R−1 v = − Mx − δ2 zxDw

Dv + R−1 u = 0

δ2 zθDw + z = − Mθ

Dz − Aw = 0

. Montgomery potential: M = φ− zθ

. steady 2D advection: D = (1 +Au) ∂x

. 2D divergence: zθ ux − zx uθ + wθ = 0

Steady Streamline Property

. divergence + thermodynamic → {(1 +Au) zθ}x = 0

→ squeezing isentropes (streamlines) accelerates flow

. velocity relations: 1 +Au = A/zθ ; w = zx/zθ

. across-ridge flow: A2 vx = R−1 (zθ −A)

. eliminating M through vorticity gives . . .
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A Master Equation for Buoyancy

Vertical Displacement Equation

. includes both f -plane and non-hydrostatic effects

A2 zxx + R−2 zθθ −
A3

2

(

1 + δ2z2
x

z2
θ

)

xxθ

+ A3δ2

(

zx

z
θ

)

xxx

= 0

. surface condition: z(x, 0) = −Ah(x) & radiation BCs

. equivalent to Long’s equation without rotation (R−2 → 0)

Hydrostatic Buoyancy Equation (δ2 = 0)

. constant stratification: z = A (θ − b(x, θ))

A2 bxx + R−2 bθθ + bxxθθ = −
1

2

(

3− 2bθ

(1− bθ)
2

b2
θ

)

xxθ

. surface condition: b(x, 0) = −h(x) & radiation BCs

. linear Queney operator in isentropic coordinates = nonlinearity
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b: Nonlinear Flows

Isentropic Coordinate Singularities

. breakdowns in coordinate inversion of z = A (θ − b(x, θ))

θz =
1

zθ
=

1

A(1− bθ)
→

{

∞ isentrope collapsing, u →∞
0 isentrope overturning, u → 0

Semigeostrophic Approximation

. small R extension of quasigeostrophy: Robinson (1960), Pierrehumbert (1985)

. SG truncation of hydrostatic master equation

A2 bxx + R−2 bθθ = 0 ; b(x, 0) = −h(x)

. isentrope collapse must occur above h(x)-dependent critical value of RA

Enhanced Wave Generation & Singularity Suppression?

. approach to collapse invalidates SG approximation, as nonlinearity must become large

. does nonlinearity ultimately suppress collapse singularity through enhanced wave generation?
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c: Nonlinear Waves at Tiny Rossby Number

Nonlinear Wave Generation

. moderate height gaussian ridge (A = NH/U = 1.00)

. tiny Rossby number flow (R = U/fL = 0.25)

. time-transient computation to steady state
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. how are these waves generated?
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Nonlinear Waves at Small & Moderate Rossby Number

Nonlinear Wave Enhancement

. moderate height gaussian ridge (A = 1.00)

. Rossby number flows (R = 0.50, 1.00)

. time-transient computation to steady state

R = 0.50 R = 1.00
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. wave amplitudes approach overturning as R↗
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Nonlinear Wave Processes

Generation at R = 0.25

. iterate on nonlinearity in hydrostatic master equation: bold(x, θ)→ bnew(x, θ)

A2 b
n
xx + R−2 b

n
θθ + b

n
xxθθ = −

1

2

(

3− 2bo
θ

(1− bo
θ
)2

(b
o
θ)

2

)

xxθ

linear solution: b0(x, θ) waves after two nonlinear iterations: b2(x, θ)
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. numerical process overwhelmed by noise beyond two iterations
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Generation & Enhancement

Nonlinear Corrections
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. 1st correction: generation

→ wavetrain downstream & aloft

. 2nd correction: enhancement

→ waves intensified aloft

. preliminary computations

→ fourier noise upstream
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Nonlinear Waves

Possible Nonlinear Mechanisms

. nonlinear modification of local Rossby number

→ enhanced topographic wave generation at ridge summit

→ modification of wave propagation (rays) in interior

. nonlinear wave generation in interior?

. total nonlinear corrections (two iterations)
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Summary

Master Equation for Buoyancy

. single equation for 2D topographic wave flow spanning non-hydrostatic to QG regimes

. quantitative tool for understanding nonlinear wave processes

. key issue: stability & accuracy of numerical solves

one iteration at R = 0.50 time-dependent computation
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