Revisiting Queney's Flow over a Mesoscale Ridge

stratified, hydrostatic & rotating

- Dave Muraki (Courant Institute & Simon Fraser Univ)
- Rich Rotunno (NCAR Boulder)

Queney's Displacement Streamlines _____

Flow over a 2D Mesoscale Ridge

- Queney 1947, 1948; Smith 1979; Gill 1982
- vertical displacement from buoyancy anomaly b(x, z)

$$z(x) = z^{\infty} - \frac{1}{N^2} b(x, z^{\infty})$$

rotating & hydrostatic case: parameters

$$\mathcal{R} = \frac{U}{fL} = 1$$
; $\mathcal{F} = \frac{U}{NH} = 1$

Displacements Recomputed _

Comparison ____

Missing Features in Queney 1947

- ▶ windward maxima of upward displacement (low level) * → as in non-rotating case
- organized downdraft into downslope windstorm *
- ▶ convergence of (low level) streamlines in lee *
 → as consistent with pressure drag in non-rotating case
- ▶ persistence of low level waves downstream *
 → as surface analysis of (Pierrehumbert 1984)
- ▶ upward mean vertical displacement of far-field waves *
 → as in QG theory

Two Fourier Calculations

- Queney's calculation: based on approximate analyses

 primarily stationary phase for far-field waves
 - \rightarrow problematic at surface, summit & ridge zenith
- our direct quadrature of Fourier integral
 - \rightarrow integrand has oscillatory singularity
 - \rightarrow FFT-periodicity & severe aliasing issues
 - \rightarrow we resolve using desingularized quadrature

Queney's Linear Theory (1947) ____

Rotating Case

- ► linear theory → Fourier integral solution
- buoyancy anomaly

$$b(x,z) = -rac{N^2}{\pi} \operatorname{Real}\left\{\int_0^\infty \hat{h}(k) \ e^{ikx} \ e^{im(k)z} \ dk
ight\}$$

• inertial wavenumber (k_f) & Scorer parameter (k_s)

$$k_f = \frac{f}{U} \quad ; \quad k_s = \frac{N}{U}$$

incident wind $U,\ f$ -plane Coriolis, stratification N

2D linear dispersion relation with rotation

small k → vertical decay; large k → outgoing waves
bell-shaped topography & Fourier transform

$$h(x) = \frac{HL^2}{L^2 + x^2}$$
; $\hat{h}(k) = \pi HL \ e^{-|k|L}$

Singular Exponent

- vertical wavenumber $m(k)
 ightarrow \infty$, as $k
 ightarrow k_f^+$
- Queney's trigonometric coordinates

$$k = \begin{cases} -k_f \sin \theta & \text{for } -\frac{\pi}{2} \le \theta \le 0 \quad (\text{decay}) \\ \\ k_f \sec \theta & \text{for } 0 < \theta < \frac{\pi}{2} \quad (\text{waves}) \end{cases}$$

• amplitude of integrand $\rightarrow 0$, as $\theta \rightarrow 0^+$

Numerical Errors

- FFT-based quadratures have periodicity problems
 wrap-around from slow decay of downstream wake
- aliasing errors
 - \rightarrow upstream wavy artifacts & downstream interference
- ▶ evaluate \mathcal{E}_n -integrals using exponential integral, Ei(x)

$$\mathcal{E}_n = \int_0^{\pi/2} e^{ik_s z \csc\theta} \sin^n \theta \, \cos\theta \, d\theta$$

Steepest Descent Approximation ____

Queney's Streamlines: Numerical Quadrature

decay of wave amplitude in zenith

waves
$$\propto \left(\mathcal{R}z
ight)^{1/6} \, \exp\left\{-C\,\mathcal{R}^{-2/3}z^{1/3}
ight\}$$

Other Fields _____

- desingularized quadratures for velocity & vertical motion
- $\mathcal{R} = 1.0, \ \mathcal{F} = 3.0$

3D Topography ____

Flow Past a Circular Gaussian Mountain

▶ 3D linear dispersion relation

$$m(k,l) = \begin{cases} ik_s \sqrt{\frac{k^2 + l^2}{k_f^2 - k^2}} & \text{for } 0 \le k < k_f \\ \\ k_s \sqrt{\frac{k^2 + l^2}{k^2 - k_f^2}} & \text{for } k_f < k < \infty \end{cases}$$

- same desingularization integrals apply
- displacement streamlines: $\mathcal{R} = 1$, $\mathcal{F} = 1$

2D gaussian ridge

3D gaussian mountain

Circular Mountain _____

• buoyancy anomaly: $\mathcal{R} = 1$, $\mathcal{F} = 1$

Transition to QG ____

- buoyancy anomaly at $z = \pi$: $\mathcal{F} = 1$
- $\blacktriangleright \quad \mathcal{R} \to 0: \text{ by } \nearrow \text{ mountain scale}$
 - \rightarrow development of QG anticyclone
 - \rightarrow wave amplitude \searrow like $e^{-1/\mathcal{R}}$?? (contour int \searrow)

Transition to QG

- surface wind vectors: $\mathcal{F} = 1$
- transition from split flow to anticyclone as $\mathcal{R} \to 0$

• $\mathcal{R} = 1$, $\mathcal{F} = 1$ at heights $z = \pi, \frac{\pi}{2}, 0$ km

Topographic Flow with Rotation

- flow structures consistent with non-rotating & QG
- desingularized Fourier quadratures: 2D & 3D

