Fourier Spectral Computing for PDEs on the Sphere

> an FFT-based method with implicit-explicit timestepping

> a simple & efficient approach

>  Dave Muraki, Andrea Blazenko & Kevin Mitchell

Mathematics, Simon Fraser University




Matlab Demos Online
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Remote Participation

> simple Matlab demos for familiar PDEs can be run in real-time on laptop
> diffusion & wave equations
> reaction-diffusion & phase field patterns
> nonlinear Schrodinger equation

> operation count: DFTs on sphere scale as 2D FFTs

> all latitude calculations done in O(N) operations: scaling reduced by factor of N ~ 64-256

> matlab demos indicated by footnotes: new demo indicated in red

http://www.irmacs.sfu.ca/events/coast-coast-abs#8253



PDEs on the Sphere: Applications & Computation
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Applications

> computing PDEs on the sphere driven by geophysics
> meteorology: atmospheric fluid dynamics
> climatology: aqua-planet oceanography
> seismology: Rayleigh surface waves

>  Fourier analysis on the sphere

> tomography, crystallography, computer graphics

> computing on a manifold: constant, positive curvature

http://www.irmacs.sfu.ca/events/coast-coast-abs#8253



PDEs on the Sphere: Applications & Computation
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Computation

> numerical schemes
> finite-difference, finite-volume, finite-element, spectral element . . .
> spherical harmonics
> gridding
> logically-rectangular, cubed sphere, longitude-latitude (long-lat), yin-yang overset grid . . .

> parallelization, mesh refinement & adaptivity

Fourier Spectral Method

> spectrally-fast: uses FFT for Fourier-based spectral transform

> simple implementation: uses long-lat grid & resembles FFT computing on 2D periodic rectangle

http://www.irmacs.sfu.ca/events/coast-coast-abs#8253



PDEs on the Sphere: Applications & Computation
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Computation

> numerical schemes [Calhoun, Helzel & LeVeque, 2008]
> finite-difference, finite-volume, finite-element, spectral element . . .
> spherical harmonics
> gridding
> logically-rectangular, cubed sphere, longitude-latitude (long-lat), yin-yang overset grid . . .

> parallelization, mesh refinement & adaptivity

Fourier Spectral Method

> spectrally-fast: uses FFT for Fourier-based spectral transform

> simple implementation: uses long-lat grid & resembles FFT computing on 2D periodic rectangle

http://www.irmacs.sfu.ca/events/coast-coast-abs#8253



Periodicity of the Sphere
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When is a Sphere is not a Sphere? . .. When it is a Torus!

> double mapping of a sphere to a periodic rectangle
> north (NP) & south pole (SP) become lines of constant value
> longitude — A-axis (—7m < A < +m)
> co-latitude — ¢-axis (0 < ¢ < 27)
D> spherical symmetry: smooth extension from long-lat sphere to torus

_ f(X; 9) for 0<¢<n
f(>\,¢)—{ Flm— X\, 21 — &) for 7<¢<2m

>  PDE should preserve spherical symmetry

http://www.irmacs.sfu.ca/events/coast-coast-abs#8253



Fourier Modes on the Sphere

flat plot sphere plot

Fourier Modes with Spherical Symmetry (m = 0)

A

> natural Fourier modes in longitude: Qnm (X, @) = qnm (o) ™

> trigonometric modes for latitude:

cos ng for m =0
anm(®) = sin ¢ sinnag for m even
sin ng for m odd

> smoothness at the poles
> m even modes have even symmetry across poles & are zero at poles for m #= 0

> m odd modes have odd symmetry across poles & are zero at poles

demo0l: n =3, m =0



Fourier Modes on the Sphere

flat plot

spectrum plot
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Fourier Modes with Spherical Symmetry (m = 0)

> natural Fourier modes in longitude: Qnm (A, ) = qnm/ (o) lmA

> trigonometric modes for latitude:

cos ng for m =0
anm(®) = sin ¢ sinnag for m even
sin ng for m odd

> smoothness at the poles
> m even modes have even symmetry across poles & are zero at poles for m # 0

> m odd modes have odd symmetry across poles & are zero at poles

demo0l: n =3, m =0
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Fourier Modes on the Sphere

flat plot

sphere plot

Fourier Modes with Spherical Symmetry (m even)

> natural Fourier modes in longitude: Qnm (XA, ¢) = gnm (@) e!mA

> trigonometric modes for latitude:

cos ng for m =20
anm (@) = sin ¢ sin ng for m even
sin ng for m odd

> smoothness at the poles

> m even modes have even symmetry across poles & are zero at poles for m # 0

> m odd modes have odd symmetry across poles & are zero at poles

demo0l: n =4, m =4



Fourier Modes on the Sphere

flat plot

spectrum plot
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Fourier Modes with Spherical Symmetry (m even)

> natural Fourier modes in longitude: Qnm (A, ) = gnm () e!mA

> trigonometric modes for latitude:

cos ng for m =20
anm (@) = sin ¢ sin ng for m even
sin ng for m odd

> smoothness at the poles
> m even modes have even symmetry across poles & are zero at poles for m # 0

> m odd modes have odd symmetry across poles & are zero at poles

demo0l: n =4, m =4
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Fourier Modes on the Sphere

flat plot sphere plot

Fourier Modes with Spherical Symmetry (m odd)

> natural Fourier modes in longitude: Qnm (A, ) = gnm () e!mA

> trigonometric modes for latitude:

cos ng for m =20
anm (@) = sin ¢ sinnag for m even
sin ng for m odd

> smoothness at the poles
> 1 even modes have even symmetry across poles & are zero at poles for m # 0

> m odd modes have odd symmetry across poles & are zero at poles

demo0Ol: n =5, m = 3
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Fourier Modes on the Sphere

flat plot

spectrum plot
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Fourier Modes with Spherical Symmetry (m odd)

> natural Fourier modes in longitude: Qnm (A, ) = gnm () e!mA

> trigonometric modes for latitude:

cos ng for m =20
anm (@) = sin ¢ sinnag for m even
sin ng for m odd

> smoothness at the poles
> 1 even modes have even symmetry across poles & are zero at poles for m # 0

> m odd modes have odd symmetry across poles & are zero at poles

demo0Ol: n =5, m = 3
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Double Fourier Series on the Sphere

sphere plot periodic flat plot

Fourier Geometry for Spherically-Symmetric Functions

>  double sum over 0, modes

4+ o0
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m=—oo n=0 m=—o0 n=0

> early works: Merilees, (1973), Orszag (1973), Boer/Steinberg (1974), Boyd (1978)
> elliptic solves: Yee (1981), Moorthi/Higgins (1992)
> fluid flow: Fornberg (1997), Spotz, et.al. (1998), Cheong et.al. (2000-2006), Layton/Spotz (2003)

>  PDE must respect spherical symmetry

demo02: n =4 m =7, a = 45° 12



Diffusion on the Sphere
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Initial Decay and Steady-State Forcing, N = 64

> forced diffusion on sphere, u(\, ¢, t)
up = Viu+ f(X, ¢)
> initial condition: ug(\, ¢, 0) = ¢ {Y%g(k, ¢) + conj}
> steady forcing, f(\, @) is rotated spherical harmonic: co {Y%(A, ¢) + conj}

> exponential-in-t solutions

w(X, ¢, t) = e 0N, ) + (1 — e P F(N, )

> FFT-based routines for spherical data: fftS.m & ifftS.m

> 3"9order accurate timestepping

demo03



Waves on the Sphere

u(2,dt) fort =3.0478

Uni-Directional Wavepacket, N = 64

> propagation on sphere, u(\, ¢, t) & v(\, P, t)

uy = v
vy = V3u

> initial wavepacket: masked spherical harmonic, ug(A, ¢) = cl{Y%g(A, ¢) + conj}
> propagation follows a great circle

> wavespeeds — 17, in short wave limit

> 2% order accurate timestepping scheme for stability

demo04
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Waves on the Sphere
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Forced Waves, N = 64
> radiation on the sphere, u(A, ¢, t) & v(\, ¢, t)
ur = v
vy = Vu o+ f1(A, @) sin24t + fo(A, ¢) sin 12t

> zero initial condition: ug(A, ¢,0) =0

> oscillatory forcings: f;(\, ¢) are spatially localized

> 2" order accurate timestepping

> no problems at the pole: geometrical distortions, or time-step restriction from over-resolution

demo05 15



Spectral Computing on the Sphere

Spherical Harmonics (SH)

> characteristics of Y ;"' (X, ¢)
> [-index indicates spatial resolution on the sphere
> SH modes preserve spatial resolution under coordinate rotations
> SH spectrum is Fourier in A-direction; m-index gives direction (—1 < m < 1)

> eigenfunctions of the surface Laplacian

> fast SH transform (S2kit), based on Driscoll & Healy (1989)

> high-complexity algorithm: fast interpolations, fast multipole, WKB approximation . . .

> Orszag (1986), Jakob-Chien/Alpert (1997), Suda/Takami (2001)

PDE Computing with Spherical Harmonics

> spectral method of choice for geophysical fluid codes
> elliptic solves & timestepping schemes
> Swartztrauber’'s 1979 assessment:
“the theoretical gap which exists between the states of the art for

discrete spectral approximations on a sphere and on a rectangle.”

16



Spatial Derivatives on the Sphere

Spectral Differentiation of Qnum (X, @) = qnm(@) ™

>

longitude differentiation
0

— Qnm = 1M Qnm

O

latitude differentiation, typically non-constant coefficient

0

sin ¢ 8_¢ Qnm = a1 Q(n—Z)m + a2 Qnm + as Q(”+2)m

tri-diagonal differentiation matrices: sin? o) Vv? | sin? o)

forward & inverse operations remain O(N?)

Double Fourier Series

>

derivative operations on the spectral representation . . .

u(A, P, t) = Z ez'm)\ Z Unm(t) gnm(P)

.. act on Fourier coefficients tynm as vectors (i )m

17



Timestepping for Fourier Methods

Diffusion on a Rectangle

>  Fourier representation

u(z,y,t) = Z Z Upm(t) ei(maz—{—ny)

m

> forced diffusion on sphere

Ut - VQ U - f(>\a ¢7 t)
> spectral equation
d ~ -
% Unm + (m2 + n2) Unm — fnm(t)

Fourier Timestepping Strategies

> integrating factor treats Laplacian exactly — ODE solve

d 2,2 2,2\, -
(m“+n)t ~ _ (m+n?)t
di {6 Unm} € fnm(t)

> exponential time-differencing — numerical quadrature

t
Tnm (t) = Gnm(0) e—(m2+n2)t +/ €(m2—1—n2)(s—t) fnm(s) ds
0

18



IMEX Timestepping for Fourier on Sphere

Diffusion on the Sphere

> Fourier representation & () as column vector data

w(@,y,t) = > (@n)m gnm(¢) €™

> forced diffusion on sphere

sin? b ur — sin? ¢ V2 u — sin? d f(A, o,t)
> spectral equation
d -
[sin® ¢] — (@n)m — [sin® & V] (@) = [sin” 6] (F)m

IMEX Scheme [Ascher, Ruuth, Wetton (1995)]

> 2" order BDF in time

o Ban)l — Atan)d, + (an)d
o { e )

N [sin2 ¢ VQ} (a”)%'_l — [Sin2 ¢] {Z(fn)%z - (an)%’b_l}

19



IMEX Timestepping for Fourier on Sphere

Diffusion on the Sphere
> Fourier representation & () as column vector data

u(z,y,t) = Z Z (Un)m gnm (@) 6im>\

> forced diffusion on sphere
sin? b ur — sin? ¢ V2 u — sin? d f(A, o,t)

> spectral equation

sin 6] < () — (510”6 V) (@) =[50 8] (Fu)m

IMEX Scheme [Ascher, Ruuth, Wetton (1995)]

> 2" order BDF in time

{ °_sin® ¢] — [sin2¢v2]} ()it =

2At

sin? 6] {4<fan>£’n — (@n),

N + Q(fn)‘zn — (ﬁn)gn_l}

20



Application: Fitz-Hugh Nagumo Equations
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Pattern Formation & Front Dynamics, N = 256

> bi-stable (0, 1) activator, u(\, ¢, t) & long-range inhibitor, v(\, ¢, t)
2

uy = %VQU +u(u—a)(u—1) + p(v—u)
1 o2

0 = SV + (v —u)
r

> labyrinth forming region in parameter space [Goldstein, DJM, Petrich, 1992]
P 0 e K1KLK — sharp fronts in u & large spherical domain
> 0<a—-1/2<«K1 — wu =0,1 bistability with weak bias to red
> 0< p K1 — weak inhibition producing blue

demoQ06 21



Application: Fitz-Hugh Nagumo Equations
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Pattern Formation & Front Dynamics, N = 256

> bi-stable (0, 1) activator, u(\, ¢, t) & long-range inhibitor, v(\, ¢, t)

2

ug = %VQU +u(u—a)(u—1) + p(v—u)
1 o2

0 = SV + (v —u)
r

> labyrinth forming region in parameter space [Goldstein, DJM, Petrich, 1992]
P 0 e K1KLK — sharp fronts in u & large spherical domain
> 0<a—-1/2<«K1 — wu =0,1 bistability with weak bias to red
> 0<p K1 — weak inhibition producing blue

demo06 22



Application: Phase-Field Model

sphere plott =1 sphere plott =8

Diffusion Fronts & Triple Point Dynamics

> complex-valued FFTs: fftSc.m & ifftSc.m

> complex-valued gradient flow, (X, ¢, t) — diffusion & tri-stability

OF * = 1
V=S f[w,w]zfs {e|vw|2+ ;W—zllzw—zaIQIw—zsIQ} ds

> ng =1 — phases defined by 3 cube roots of unity
D 0<ekK 1 — sharp fronts separating phases

> slow drift of phase fronts — conformity

> on the plane, steady boundary-supported 120° triple junctions [Bronsard/Reitich, 1993]

demoQ7 23



Application: Phase-Field Model

sphere plott =1 sphere plott =10

Diffusion Fronts & Triple Point Dynamics

> complex-valued FFTs: fftSc.m & ifftSc.m

> complex-valued gradient flow, (X, ¢, t) — diffusion & tri-stability

SF . . 1
=55 o Fel= | {e|vw|2+ ;|¢—Zl|2|"¢—22|2|¢—23|2} as

(o

> ng =1 — phases defined by 3 cube roots of unity
D 0<ekK 1 — sharp fronts separating phases

> slow drift of phase fronts — conformity

> on the plane, steady boundary-supported 120° triple junctions [Bronsard/Reitich, 1993]

demo07 24



Application: Nonlinear Schrodinger Equation
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Waves with Dispersion & Nonlinearity

> complex-valued, ¥(A, ¢, t)
. 2 2
iy = VY F |[P[7 9
> — — defocussing; + — focussing
> near spherical harmonic initial condition

> on the plane: singularity possible in focussing case
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Ju(?.¢)] for t = 0.03
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In Closing

Simple & Spectrally-Fast PDE Computing

>  Fourier-based spectral transform

> implicit-explicit timestepping schemes

> suite of matlab routines

> follows paradigm for Fourier spectral method

> stability issues for fluid flows

>>  advection of rotating shallow water potential vorticity, DJM & Blazenko
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