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Abstract. The textbook first encounter with nonlinearity in a partial differential equation
(PDE) is the first-order wave equation: ut + uux = 0. Often referred to as the inviscid Burgers
equation, many are familiar with this equation in the theoretical contexts of characteristics, wave-
breaking, or shock propagation. Another canonical behavior contained within this simplest of PDEs
is the spectral cascade. Surprisingly, buried in a little-known 1964 article by G.W. Platzman is an
elegant example of an exact Fourier series solution associated with a purely sinusoidal initial condi-
tion. This Fourier representation, valid prior to wavebreaking, is generalized to arbitrary continuous
initial conditions on both the periodic and infinite domains. Within the specific example of Platz-
man’s original problem, it is also shown that a perturbation solution linearized about the initial
condition provides a short-time representation that embodies the spectral cascade uniformly to large
wavenumbers.
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1. Introduction. One of the first nonlinear partial differential equations (PDEs)
typically encountered in the applied mathematical canon is the wave equation

ut + uux = 0(1.1)

which, though elementary, provides a rich introduction to nonlinearity. As a first-order
PDE, it provides an example with exact representations for the quasi-linear character-
istics. Convergence of these characteristics leads to wavebreaking, multiple-valuedness
and the development of shock structures. Subsequent propagation of discontinuities is
governed by Rankine-Hugoniot conditions obtained from conservation law properties
of weak solutions. Beyond this, there is a vast literature associated with this equa-
tion whose early references include the simple wave of advection in one-dimensional
fluid flow [5], the inviscid limit of Burgers equation [2], and the kinematic wavespeed
equation [18].

Without the advantages of linearity, the usual applications of Fourier methods
do not generate modal solutions to (1.1). Rather the opposite occurs, as the forward
time evolution from a sinusoidal initial condition, via the wave steepening process,
immediately generates a solution with non-zero Fourier amplitudes at all scales. This
is an example of a spectral cascade, whereby the nonlinear interaction of Fourier
modes leads to an increase in the Fourier amplitudes at shorter spatial scales (higher
wavenumbers). While this imagery of the downscale cascade is quite intuitive, as the
textbook Fourier methods do not apply to nonlinear PDEs, the absence of illustrative
examples is one barrier to elementary-level analysis of this process. It is relatively
unknown however that a Fourier series solution, whose coefficients are expressed as
Bessel functions, can be elegantly derived for the evolution of (1.1) in the special case
of a sinusoidal initial condition. This surprising result, by G.W. Platzman in 1964,
appeared in Tellus, a journal for dynamic meteorology and oceanography [13].

In this article, we rederive this result, valid up to the time of first wavebreaking,
for a more general integral representation of the Fourier coefficients that holds for
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arbitrary periodic initial conditions. Then, the downscale cascade for the sinusoidal
example is further studied from the perspectives of spectral dynamics, and linearized
PDE dynamics about small amplitude initial conditions. This second calculation
demonstrates that a simple perturbative approach can produce an approximate rep-
resentation of the cascade that is uniform to large wavenumbers. Finally, the analysis
is extended to the infinite line, where it is applied to the downscale cascade from a
Gaussian initial condition.

Coincidentally, the original motivation for revisiting this elementary problem also
arose because of a question in atmospheric dynamics. In particular, for rotating,
stratified flow there are instances where the generation of smaller scale waves occurs,
not directly through a scale-separated process, but rather by a weak downscale cas-
cade. A scaling estimate for the amplitude of the small-scale waves has been obtained
based on a crude linearization procedure; however, prudence (and slightly skeptical
colleagues) suggested that identification of a concrete precedent would lend credence
to the result.

Thus, the primary intent here is the development of perturbative approaches for
understanding the downscale cascade at large wavenumbers. The Platzman solution,
for which there is an exact Fourier representation, provides a benchmark against which
we can compare the results. And since the operative approximation is simply one of
linearization, we anticipate that similar estimates can also be obtained for less well-
understood nonlinear PDE problems. As it happens, the concepts required to relate
this particular story nearly read as an introductory syllabus of applied mathematics:
characteristics, Fourier representations, special functions, perturbation series, contour
integration, and integral asymptotics. So, in keeping with the illustrative nature of
this problem, these calculations have been presented in a manner to emphasize its
more expository aspects.

2. From Characteristics to Fourier Series. Consider the general initial value
problem of the nonlinear wave equation

ut + uux = 0 ; u(x, 0) = f(x)(2.1)

periodic on a domain −π ≤ x ≤ π. The characteristics are curves in x-t space which
are defined by the ordinary differential equation (ODE)

dx

dt
= u ; x(0) = x0(2.2)

where x0 labels the originating initial point at (x, t) = (x0, 0). Along this character-
istic, the PDE (2.1) is now seen to be the perfect derivative

du

dt
= 0 ; u(0) = f(x0)(2.3)

which shows that u maintains the constant value established at its initial point (x0, 0).
Solutions to the ODEs (2.2) and (2.3) produce the wave solution

u = f(x0) ; x = u t + x0(2.4)

expressed as a parametrization on x0. Eliminating the parameter immediately pro-
duces the well-known implicit, general solution for u(x, t)

u = f(x− u t) .(2.5)
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Fig. 2.1. Wavebreaking evolution of u(x, t)/ε beginning from a sinusoidal initial condition (2.6).
Shown are scaled times εt = 0, 1/2, 1, 3/2 with the initial and critical wavebreaking profiles in solid,
and an overturning profile in gray dashed. Obtained from the parametric solution (2.4), the dots
track values of u = f(x0) corresponding to characteristics labelled by x0 at intervals of π/20.

It is a consequence of the nonlinearity in (1.1) that (non-trivial) solutions beginning
from smooth initial conditions will eventually develop a finite-time derivative sin-
gularity. Figure 2.1 shows the solution u(x, t) beginning from the sinusoidal initial
condition

f(x) = −ε sinx(2.6)

at times εt = 0, 1/2, 1, 3/2, where the critical wavebreaking event occurs at εtc = 1.
Although the ε can be removed by rescaling, it is retained for future convenience in
the short-time analyses of Sections 4 and 5.

At first glance, construction of a Fourier series solution directly from the PDE
(1.1) seems unlikely since its nonlinearity precludes the usual application of Fourier
transforms. It is a truly remarkable consequence from Platzman’s original analysis
that the Fourier series representation of u(x, t)

u(x, t) =
a0

2
+

∞∑
n=1

[an(t) cos nx + bn(t) sin nx](2.7)

an(t) =
1
π

∫ +π

−π

u(x, t) cos nx dx(2.8)

bn(t) =
1
π

∫ +π

−π

u(x, t) sinnx dx(2.9)

has coefficients an(t) and bn(t) which can be manipulated into integrals completely
determined by the given initial profile f(x). For the sine coefficient bn(t), this refor-
mulation begins from an integration by parts of (2.9), followed by a replacement of
ux using the parametrized form of the characteristic x = ut + x0 (2.4)

bn(t) =
1

πn

∫ +π

−π

ux(x, t) cos nx dx

=
1

πnt

∫ +π

−π

(
1− dx0

dx

)
cos nx dx .(2.10)
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Noting that only the dx0/dx-term contributes to the full-period integration, changing
the variable of integration to x0 gives

bn(t) = − 1
πnt

∫ +π

−π

cos[nx0 + nt f(x0)] dx0 ,(2.11)

and achieves a final integral which involves only the initial condition (2.1). Analogous
operations obtain the cosine coefficients for n ≥ 0

an(t) =


1
π

∫ +π

−π

f(x0) dx0 for n = 0

1
πnt

∫ +π

−π

sin[nx0 + nt f(x0)] dx0 for n > 0

(2.12)

where the exceptional n = 0 case is simply the conservation of the mean by the PDE
(1.1). It is important to note that the use of integration by parts assumes that the
solution remains continuous, and hence is not valid after wavebreaking.

A further step can be taken by substituting the Fourier coefficients (2.12) and
(2.11) back into the series (2.7). First, the Fourier sine and cosine sums collapse into
a single sum

u(x, t) =
a0

2
+

∞∑
n=1

1
πnt

∫ +π

−π

sinn[x− x0 − t f(x0)] dx0

=
a0

2
+

1
t

∫ +π

−π

[(
x− x0 − t f(x0)

2π
mod 1

)
− 1

2

]
dx0 ;(2.13)

then, an interchange of sum and integral yields what seems to be a quadrature so-
lution for (2.1). Prior to crossing of characteristics however, u(x, t) cannot depend
globally on the initial condition, but is determined exactly by one value of the initial
condition. The resolution of this apparent nonlocality is the presence of the modulus
in (2.13) which produces a discontinuous integrand. The discontinuity occurs pre-
cisely at the unique value of x0 parametrizing the characteristic (2.4) that determines
u(x, t). Shifting the integration domain to the periodic interval x0 − 2π ≤ y ≤ x0

allows the removal of the modulus

u(x, t) =
a0

2
+

1
t

∫ x0

x0−2π

[
x− y − t f(y)

2π
− 1

2

]
dy

=
[
a0

2
− 1

2π

∫ x0

x0−2π

f(y) dy

]
+
∫ x0

x0−2π

[
x− x0

2πt
− y − (x0 − π)

2πt

]
dy

=
x− x0

t
= f(x0) ,(2.14)

and after some grouping of terms reduces the integral to the local value f(x0). Simi-
larly, for the case when several characteristics are involved, the integral then becomes
a weighted sum over all such characteristic values ±f(x0), where the sign matches
that of dx/dx0. For instance, when the characteristic solution becomes triple-valued
(ub < um < ut), the series adopts the value ub−um +ut. This averaging effect within
the Fourier series is illustrated by the thin, dark curve in Figure 2.2 in comparison
to the multi-valued characteristic solution (εt = 3/2) as replicated from Figure 2.1.
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Fig. 2.2. The characteristic solution (2.4) from Figure 1 (thick, light curve) beyond the wave-
breaking time (εt = 3/2) compared with the Fourier series representation (3.2) which is single-valued
and continuous (thin, dark curve). The two solutions differ only in regions where the characteristic
solution is multiple-valued.

Thus, although the Fourier series defined by (2.11) and (2.12) no longer satisfies the
original PDE (1.1) after wavebreaking, the series retains a meaning related to the
multi-valuedness of the characteristic solution (2.4), but not one connected with any
of the usual entropy solutions [6].

3. Platzman’s Solution and its Downscale Cascade. The specific example
considered by Platzman [13] was based upon the sinusoidal initial condition (2.6) and
whose forward evolution is shown as Figure 2.1. It is this solution for which Platzman
essentially realized that the Fourier coefficient (2.11)

bn(t) = − 1
πnt

∫ +π

−π

cos(nx0 − ntε sinx0) dx0 = −2
Jn(εnt)

nt
(3.1)

resulted in a standard integral representation of the Bessel function of order n [1]. This
produced a solution to the nonlinear wave equation (1.1) having an exact expression
for its Fourier sine series

u(x, t) = −2
∞∑

n=1

Jn(εnt)
nt

sinnx(3.2)

where, in the t → 0+ limit, only the n = 1 term is nonzero and the initial condition
(2.6) is satisfied. In classical analysis, summations whose terms involve Bessel func-
tions of increasing indices and arguments are known as Kapteyn series [16]. As an
historical aside, Platzman also recognized that the identical series also appears in the
analysis of the Keplerian orbital problem.

It is clear from the coefficients (3.1) that all modes become activated for t > 0.
This is an illustration of a downscale spectral cascade whereby the nonlinear evolution
from a single initial Fourier mode leads to the immediate appearance of all smaller
scales. A Bessel recurrence identity [1] gives an alternate expression for (3.1)

bn(t) = −ε
Jn+1(εnt) + Jn−1(εnt)

n
,(3.3)

from which it follows that the n ≥ 2 amplitudes |bn(t)| are strictly increasing up to the
time of wavebreaking, since J ′

n(z) > 0 in the interval 0 < z < n [16]. The exception is
5
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Fig. 3.1. Semi-log plot of spectral amplitudes bn(t)/ε for Platzman’s Fourier series solution
(3.2) showing the growth of the n > 1 modes at scaled times εt = 1/4, 1/2, 3/4. The exponential
spectrum is indicated by linear asymptotes (3.5) which are becoming flatter with time (dash-dot,
dash, solid); and thus illustrates a downscale spectral cascade. The decrease in the fundamental
n = 1 mode is not discernable on this semi-log axis.

the fundamental amplitude |b1(t)|, the source of the cascade, which decreases steadily
and is roughly 88% of its original amplitude at the time of critical wavebreaking.
Figure 3.1 shows a semi-log plot of the Fourier amplitudes against wavenumber for
the times εt = 1/4, 1/2, 3/4.

Also shown in Figure 3.1 are lines indicating the large-n asymptotic slopes of the
semi-log spectral amplitudes. These are evident from the Debye expansions for the
Bessel functions of large index and argument [1]

|bn| ∼
√

2
πt2 tanh α

n−3/2 en(−α+tanh α) as n→∞(3.4)

where coshα = 1/εt. The spectral slope thus expresses the exponential decay rate
with wavenumber, −α + tanh α, and can be explicitly written in terms of εt

ln |bn|
n

∼ ln
(

εt

2

)
+
√

1− ε2t2 − ln

(
1 +

√
1− ε2t2

2

)
as n→∞ .(3.5)

This expression is equivalent to that deduced by Sulem, Sulem and Frisch [15] from
the pole singularities of the analytic continuation of u(x, t) to the complex x-plane.1

The early cascade has a spectral slope whose growth is logarithmic in time, and
corresponds to a geometric decay of the Fourier amplitudes by the factor εt (as also
seen later in 5.3). However as the wavebreaking εt = 1 is approached, the spectral
slope flattens to zero. After this time, the decay becomes algebraic following the
development of the derivative singularities as those shown in Figure 2.2.

4. Spectral Dynamics and the Short-Time Cascade. A conventional ap-
proach for analyzing the cascade is by direct substitution of the series (2.7) into the
PDE (1.1). For the special case of a Fourier sine series, the terms involved in the

1Also in [15], is the identification of a narrow n−4/3 spectral regime which occurs just prior to
the critical wavebreaking time. This corresponds to a special case of the Bessel asymptotics [1].
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sinnx-mode are

. . . + b′n sinnx + . . .

+
n−1∑

1

k bk bn−k cos kx sin(n− k)x

+
∞∑
1

k bk bn+k cos kx sin(n + k)x

+
∞∑
1

(n + k) bn+k bk cos(n + k)x sin kx + . . . = 0 .

(4.1)

After applying a trigonometric product identity and re-organizing the terms, a de-
scription of the spectral dynamics is obtained as coupled ODEs

b′n = −n

4

n−1∑
1

bk bn−k +
n

2

n−1∑
1

bk bn+k +
n

2

∞∑
n

bk bn+k(4.2)

for the amplitudes bn(t) over wavenumbers n. The first of the three sums corresponds
to downscale transfer involving longer waves with wavenumbers from below, k < n
and (n − k) < n. The second corresponds to mixing transfer involving straddling
wavenumbers, k < n < n+k; while the third corresponds to upscale transfer involving
only shorter waves, n ≤ k < n + k. These last two summations can be combined into
a single sum. It is completely opaque as to how the Bessel amplitudes (3.1) could
possibly have been directly obtained beginning only from the spectral ODEs (4.2) and
the initial conditions {bn(0)} = {−ε, 0, 0, . . .}.

Analytical progress is possible however, in the limit of small ε. At O(1) times,
the assumption of small amplitude initial condition leads to a wavenumber scaling of
the Fourier amplitudes bn(t) = O(εn) and allows a natural truncation of the spectral
dynamics (4.2) to involve only the downscale transfer summation

b̃′n =


0 for n = 1

−n

4

n−1∑
1

b̃k b̃n−k for n ≥ 2 .
(4.3)

The exact solution to the above truncation must therefore be the small ε limit of
Platzman’s solution (3.1)

b̃n(t) = −ε
nn−1

n!

(
εt

2

)n−1

(4.4)

which derives from the first non-zero term of the Taylor expansion for the Bessel
function [1]. Verification of this, by direct substitution of (4.4) into (4.3), yields a
combinatorial identity of uncommon origin — one such instance is found in graph
theory as an elementary counting of trees [8]. A direct approach for arriving at
expression (4.4) is via a generating function

B(z, t) =
∞∑

n=1

b̃n(t)
zn

2
(4.5)
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for which the downscale spectral dynamics (4.3) becomes the first-order PDE

Bt + zBBz = 0 ; B(z, 0) = −εz

2
.(4.6)

Solution by characteristics leads to the implicit relation

Bt eBt = −εzt

2
(4.7)

known as Lambert’s transcendental equation [4], whose solution has been designated
as the W-function, and gives

B(z, t) =
1
t

W

(
−εzt

2

)
.(4.8)

However, explicit recovery of the formula for the coefficients (4.4) follows more directly
from (4.7) with the application of the Lagrange inversion theorem. Using the Stirling
approximation for the factorial in (4.4) gives the large wavenumber behavior

b̃n ∼ −
√

2
πt2

n−3/2 en

(
εt

2

)n

for n→∞(4.9)

and implies the downscale spectral slope

ln |b̃n|
n

∼ ln
(

εt

2

)
+ 1 as n→∞ for εt� 1 .(4.10)

Thus, at short times (εt � 1), the spectral slope (3.5) for Platzman’s example is
established by downscale transfers through the spectral cascade (4.3).

5. A Uniform Representation of the Short-Time Cascade. One conclu-
sion from the previous Section is that even the truncation of the spectral dynamics
to the downscale transfer requires the solution of a fully nonlinear problem. As such,
the results relied upon considerable good karma in there being an exact solution (4.4)
to a system of nonlinear equations (4.3). In this section, a generic linear approach is
investigated for constructing an approximate solution to the PDE (2.1) that involves
the full spectrum of wavenumbers.

Consider a weakly nonlinear analysis which seeks the form of a perturbation
expansion

u(x, t) ∼ f(x) + u2(x, t) + u3(x, t) + . . .(5.1)

where the first term is a small amplitude initial condition f(x) = O(ε) � u2(x, t) �
u3(x, t) . . . for ε � 1. The simplest such expansion assumes that the corrections
un(x, t) = O(εn). Substituting (5.1) into the PDE and collecting on powers of ε gives
the sequence of equations

∂un

∂t
= −

n−1∑
1

un−k
∂uk

∂x
; un(x, 0) = 0(5.2)

which can be solved iteratively for n ≥ 2 by direct integration for t > 0. For the
sinusoidal initial conditions, the first two corrections are

u2(x, t) = −ε

(
εt

2

)
sin 2x

u3(x, t) = −ε

(
εt

2

)2{3
2

sin 3x− sinx

}
;

(5.3)
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subsequent terms un(x, t) contain only O(εn) expressions which not only include the
short-time harmonic b̃n(t) sinnx from the downscale transfer (4.4), but also smaller
harmonics due to contributions from the straddling and upscale transfers (4.2). Finite
application of this method thus produces an O(εn) series expansion limited to the first
n harmonics. Such a finite expansion is not a uniform approximation over wavenum-
bers, since for the sinusoidal initial condition, the extent to which the spectral cascade
is realized is limited by the number of terms in the expansion (5.1).

To develop an approach that is more uniform in wavenumber, consider the solution
as a disturbance from a small amplitude initial condition

u(x, t) = f(x) + ũ(x, t)(5.4)

so that ũ(x, t)� f(x) = O(ε). This results in the exact disturbance equation

ũt = −ffx − (fũ)x − ũ ũx ; ũ(x, 0) = 0(5.5)

where the right-side terms are nominally O(ε2), O(ε3) and O(ε4). If (5.5) is approx-
imated by keeping only the ffx-term, then the disturbance ũ(x, t) is O(ε2)-correct
and would be identical to u2(x, t) as determined by (5.2). Alternatively, an additional
order in ũ(x, t) is achieved if only the last and nonlinear disturbance term is neglected.
This truncation can be interpreted as a first Newton iterate, since the ũ-correction is
obtained by a linearized solve against a residual error (in the form of the ffx-term).
Thus we consider the linearized problem

Ut + (fU)x = −ffx ; U(x, 0) = 0(5.6)

so that u(x, t) ∼ f(x)+U(x, t) constitutes an O(ε3)-correct asymptotic representation.
Multiplying the equation though by f(x) and defining v(x, t) = f(x)U(x, t) gives

vt + fvx = −1
2
f(f2)x ; v(x, 0) = 0(5.7)

which is a first-order, but non-constant coefficient and inhomogeneous PDE. Unlike
the original PDE (1.1), the characteristics for the linearization (5.6) do not depend
on the solution, but only on the initial condition, via

dx

dt
= f(x) ; x(0) = x0(5.8)

where again, x0 labels the originating initial point at (x, t) = (x0, 0). Along this
characteristic, the PDE (5.8) now becomes the perfect derivative

dv

dt
= −1

2
dx

dt
(f2)x = −1

2
d(f2)

dt
; v(x0, 0) = 0(5.9)

which relies upon the t-independence of f2. Direct integration from a zero initial
condition gives the solutions

v(x, t) = −1
2
(
f2(x)− f2(x0)

)
U(x, t) = −1

2

(
1− f2(x0)

f2(x)

)
f(x)

(5.10)
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where the label x0 = x0(x, t) is obtained by inverting the solution of the characteristic
ODE (5.8). Specifically for Platzman’s initial condition, it is shown next that this
correction term is no longer spectrally limited to a few harmonics, but embodies a
cascade across all wavenumbers.

For the case of f(x) = −ε sinx, the characteristic ODE (5.8) is a nonlinear, but
separable equation; hence

ln
(

tanx/2
tanx0/2

)
=
∫ x

x0

dx

sinx
= −ε

∫ t

0

dt = −εt(5.11)

from which the trigonometric relation tan(x0/2) = eεt tan(x/2) follows. Using this
and a half-angle identity gives

sinx0 =
2 tan(x0/2)

1 + tan2(x0/2)
=

2 eεt tan(x/2)
1 + e2εt tan2(x/2)

=
sech εt

1− tanh εt cos x
sinx(5.12)

which, in the Platzman case, effects the inversion of the characteristic label x0 into the
original x, t-coordinates. Thus, the linearized solution (5.10) leads to the asymptotic
approximation

u(x, t) ∼ −ε sinx +
ε

2

(
1− sech2εt

(1− tanh εt cos x)2

)
sinx + O(ε4)(5.13)

where the second term is actually O(ε2) with the vanishing of the bracketted factor
when ε = 0.

Obtaining the spectral cascade requires finding the Fourier series representation
of (5.13). The obvious problematic term is the second term in the correction whose
Fourier-sine coefficient is the imaginary part of

− ε

2π
sech2εt

∫ +π

−π

einx sinx

(1− tanh εt cos x)2
dx .(5.14)

This expression can be evaluated via complex contour integration around a rectangle
whose corners are {−π,+π,+π + iY,−π + iY }. Contributions from the sides parallel
to the imaginary axis cancel by the periodicity of the integrand; and the contribution
from the side with Im(z) = Y tends to zero as Y → +∞ by the decay of the integrand.
The closed contour contains only a double pole at zp where

cos zp = cosh izp =
tanh(εt/2) + coth(εt/2)

2
= coth εt

⇒ eizp = tanh(εt/2)(5.15)

and thus, is located along the positive imaginary axis for εt > 0. The end result of
this residue calculation is the series representation for (5.13)

u(x, t) ∼ − ε

2

(
sinx + sech2(εt/2)

∞∑
1

n tanhn−1(εt/2) sinnx

)
(5.16)

which reveals the spectral slope for (5.13) to be

slope ∼ ln
∣∣∣∣tanh

εt

2

∣∣∣∣ as n→∞ for εt� 1 .(5.17)
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Thus the logarithmic part of the εt� 1 behavior is obtained for the spectral slope at
large wavenumbers. Note that this is really just a scaling result on the amplitudes,
indicating only that harmonics decay as powers of εt. This limited result is not too
surprising since the downscale cascade within the short-time and linear approximation
is still a fully nonlinear process (4.3). Nonetheless, it is shown that the linearization
(5.6) does produce, after just one perturbative calculation, an explicit short-time
representation (5.13) that is asymptotically valid to O(ε3) yet possesses full spectral
content that scales uniformly at large wavenumbers.

6. Fourier Solution on the Infinite Line. The derivation of the periodic
Fourier coefficients (2.11, 2.12) is easily modified to obtain an analogous integral for
the Fourier transform solution on the infinite line. Defining the Fourier transform
representation of continuous solutions to (1.1) by

u(x, t) =
∫ +∞

−∞
c(k, t) e−ikx dk(6.1)

the coefficients c(k, t) can also be shown to derive from the initial profile u(x, 0) =
f(x). Beginning from the Fourier integral, an integration by parts is performed

c(k, t) =
1
2π

∫ +∞

−∞
u(x, t) eikx dx =

i

2πk

∫ +∞

−∞
ux(x, t) eikx dx ,(6.2)

which again assumes continuity as well as sufficiently fast decay of the solution at
x → ±∞. In a slight departure from the periodic case, the next step introduces the
parametric solution u = f(x0)

c(k, t) =
i

2πk

∫ +∞

−∞
f ′(x0)

dx0

dx
eikx dx

=
i

2πk

∫ +∞

−∞
f ′(x0) exp[ik(x0 + tf(x0))] dx0

(6.3)

where decay of the integrand is ensured through the initial profile. (Note that an
analogous formula can also be derived for the periodic case.)

For example, the solution from an initial Gaussian profile f(x) = e−x2/2 remains
single-valued up until the breaking time of tc =

√
e (Figure 6.1). In the limit of

large wavenumber k, the Fourier integral (6.3) can be approximated by the method
of steepest descent. The complex plane for the phase function φ(z) = i(z + te−z2/2) is
shown as Figure 6.2. The saddlepoints of the phase are determined by the stationary
points φ′(zs) = 0, which for the Gaussian profile can be expressed as the condition

(−z2
s)e(−z2

s) = − 1
t2

.(6.4)

Thus the saddlepoints are complex-valued solutions to Lambert’s transcendental equa-
tion z2

s = −W (−1/t2). Figure 6.2 shows the four saddlepoints closest to the real z-axis
at time t/tc = 3/4. The integration along the real axis (6.3) can be deformed into a
scalloped contour (solid curve in Figure 6.2) in the upper half-plane, so that the dom-
inant contribution will be localized to the saddlepoint with the maximum Re(φ(zs)).
The quadratic Taylor expansion of the phase function at a saddlepoint simplifies to

φ(z) ∼ i

(
zs +

1
zs

)
+

i

2

(
zs −

1
zs

)
(z − zs)2 .(6.5)
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Fig. 6.1. Wavebreaking evolution of u(x, t)/ε beginning from a Gaussian initial condition.
Shown are scaled times t/tc = 0, 1/2, 1, 3/2 with the initial and critical wavebreaking profiles in
solid, and an overturning profile in gray dashed. Obtained from the parametric solution (2.4), the
dots track values of u = f(x0) corresponding to characteristics labelled by x0 at intervals of 1/5.

Fig. 6.2. Complex plane for the phase function φ(z; t) for t/tc = 3/4. The grayscale indicates
Re(φ(z; t)), where darker regions correspond to exponential smallness of the integrand. The contours
shown are associated with the four saddlepoints closest to the real axis (closest zs ≈ 0.95 + 0.55i).
Solid contours are paths of steepest descent to regions of exponentially small integrand. Dashed
contours are level curves of the magnitude.

and gives the steepest descent contribution√
1

2πi (zs − 1/zs) t2
k−3/2 ei(zs+1/zs)k(6.6)

where additional time dependence lies in the location of the saddlepoint (6.4). Using
only the dominant saddlepoint, this gives an expression for the spectral slope

ln |c(k, t)|
k

∼ − Im
(

zs +
1
zs

)
as k →∞(6.7)

which is verified by the lines in Figure 6.3. As expected, the breaking time tc =√
e coincides with the first real root of the saddlepoint condition (6.4) where the

spectral decay changes from exponential to algebraic. Thus, at finite times 0 < t < tc,
the spectrum decays exponentially despite its beginning from more rapid quadratic
Gaussian decay (light curve).
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Fig. 6.3. Semi-log plot of spectral amplitudes cn(t)/ε of a pseudo-spectral computation (de-
aliased to 2048 modes on a 4π-periodic domain) from a Gaussian initial condition (gray solid).
The downscale spectral cascade is illustrated by the growth of the Fourier amplitudes (dark solid)
over times εt = 1/4, 1/2, 3/4. The flattening of the exponential spectrum is indicated by the linear
asymptotes (dash-dot, dash, solid) as calculated from the steepest descent contribution (6.7) from
the saddlepoint nearest the real axis.

7. Closing Thoughts. The Fourier results presented here are spectral identities
which follow from Platzman’s observation that ux is simply related to the change of
variable dx0/dx via the parametric solution (2.4) for (1.1). This is a rather unique sit-
uation that does not readily apply beyond the characteristic wave equation. Nonethe-
less, one generalization for which such spectral formulas can be stated is

ut + g(u, x) ux = h′(t) u ; u(x, 0) = f(x) .(7.1)

On the infinite line, the Fourier transform is expressible as the integral

c(k, t) =
i

2πk
eh(t)−h(0)

∫ +∞

−∞
f ′(x0) eik x(x0,t) dx0(7.2)

where x(x0, t) is determined by the characteristic ODE

dx

dt
= g

(
f(x0) eh(t)−h(0), x

)
; x(0) = x0 .(7.3)

The occurrence of non-trivial examples where the formulas (7.2, 7.3) allow further
analysis is a rare event. However, a decaying version of Platzman’s example with the
additional effect h′ = −α, a constant value, yields

bn(t) =
2α

n(1− eαt)
Jn

(
εn(1− e−αt)

α

)
;(7.4)

an exercise that reveals a suppression of the wavebreaking when α > ε.
As an explicit Fourier analysis of the inviscid Burgers equation, the spectral for-

mulas (2.12, 2.11, 6.3) can be used to investigate cascades from other initial condi-
tions. Although Platzman’s example highlighted the downscale cascade, the dynamics
of upscale transfers to large scales from smaller scales can also be addressed by ini-
tial sums of sinusoids. For real analytic initial conditions, the method of steepest
descent generally applies for obtaining the asymptotic exponential spectrum. In con-
trast, compactly supported (but piecewise continuous) initial conditions yield simple
examples whose spectra have algebraic decay.
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The Burgers equation, and its inviscid limit, have long been used as a pedagogical
introduction to the nonlinearity of fluid motions [2, 3, 7]. While the analyses presented
here illustrate important ideas in the spectral behavior of nonlinearity, they are far
from those required to understand the multi-dimensional, statistical nature of fluid
turbulence. This generalization of Platzman’s result provides explicit formulas for one-
dimensional, deterministic and continuous realizations of the spectral cascade — hence
the qualification to a weak cascade. Nonetheless, the evolutions are demonstration
of the nonlinear process by which advection sustains the exponential spectrum in
the dissipation range, the scales at which the fields are smooth [10]. Beyond the
turbulence question, these results provide an elementary example of the broader effort
to understand the spectral signatures of singularities in nonlinear PDEs [12, 15, 14].

Although the existence of an exact solution (2.5) would seemingly render (1.1) as
fully understood, recent revisitings in the research literature remind that this text-
book equation still serves as a source of inspiration for investigations in nonlinearity.
Weideman [17] used complex-valued solutions as tests for a method for tracking sin-
gularities using numerical analytical continuation. In particular, the solution from
the initial condition u(x, 0) = eix, is solved (coincidentally) via Lambert’s transcen-
dental equation, and the dynamics of its logarithmic branch point is computed. The
sinusoidal initial condition has also been used by Majda and Timofeyev [9] to initiate
post-breaking ergodic dynamics amongst the Fourier modes for a Galerkin trunca-
tion of the spectral dynamics. The truncated dynamics exhibit a chaos which is
shown to have a well-defined statistical equilibrium. Finally, the linearization re-
sult is very closely related to some current investigations of Mattingly, Soudian and
Vanden-Eijnden [11] who are constructing linear spectral cascade models with exact
solutions. These models have spectral dynamics which are limited to linear coupling
of nearest neighbors (in wavenumber), of which (5.6) is an inviscid example. Their
analyses involve an unexpected generalization of the generating function method that
is based on orthogonal eigenfunction expansions.

In these investigations the wave equation (1.1) is utilized as a testbed for further-
ing our understanding of nonlinearity. It is in similar spirit that these one-dimensional
Fourier results, although limited to continuous solutions, are communicated for their
novelty as an exact spectral viewpoint.

Acknowledgments. The author acknowledges Ed Spiegel, who recommended
the Platzman article some years ago. Special thanks to colleagues Ralf Wittenberg
and Youngsuk Lee for their enthusiastic discussions during the course of this work,
and for their careful readings of the manuscript. Finally, the author is also very
grateful to Jim Colliander [15], Elef Gkioulekas [10], and Mike Siegel [12] for alerting
me to related works.

REFERENCES

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Formulas and Tables, National
Bureau of Standards, Washington DC, (1964).

[2] J.M. Burgers, A mathematical model illustrating the theory of turbulence, Advances in
Applied Mechanics, 1, Academic Press, New York, (1948).

[3] J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quarterly of
Applied Mathematics, 9 (1951), pp. 225-236.

[4] R.M. Corliss, G.H. Gonnet, D.E.G. Hare, D.J. Jeffery and D.E. Knuth, On the Lambert
W Function, Adv. Comput. Math., 5 (1996), pp. 339–359.

[5] R. Courant and K.O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, New
York, 1948.

14



[6] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.
[7] E. Hopf, The partial differential equation ut + uux = νuxx, Comm. Pure and Appl. Math., 3

(1950), pp. 201–230.
[8] D.E. Knuth and B. Pittel, A Recurrence Related to Trees, Proc. AMS, 105 (1989), pp. 335–

349.
[9] A.J. Majda and I. Timofeyev, Remarkable statistical behavior for truncated Burgers-Hopf

dynamics, PNAS, 97 (2000), pp. 12413–12417.
[10] O.P. Manley, The dissipation range spectrum, Phys. Fluids A, 4 (1992), pp. 1320–1321.
[11] J.C. Mattingly, T. Soudian and E. Vanden-Eijnden, work in progress, (2005).
[12] D.W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex

sheet, Proc. R. Soc. Lond. A, 365 (1979), pp. 105–119.
[13] G.W. Platzman, An exact integral of complete spectral equations for unsteady one-

dimensional flow, Tellus, XVI (1964), pp. 422–431.
[14] D. Senouf, Dynamics and Condensation of Complex Singularities for Burgers’ Equation II,

SIAM J. Math. Anal., 28 (1997), pp. 1490-1513.
[15] C. Sulem, P.-L. Sulem and H. Frisch, Tracing Complex Singularities with Spectral Methods,

J. Comp. Phys., 50 (1983), pp. 138–161.
[16] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press,

Cambridge, 1944.
[17] J.A.C. Weideman, Computing the Dynamics of Complex Singularities of Nonlinear PDEs,

SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 171-186.
[18] G.B. Whitham, Linear and nonlinear waves, Wiley, New York, 1974.

15


