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Abstract

In the first of a multistage process to understand the generation of internal waves from rough topography, we have

performed laboratory experiments to study wave generation over and in the lee of small- and large-amplitude sinusoidal

topography. The model hills are towed at a range of speeds along the surface of a uniformly salt-stratified fluid. The

experiments show that internal waves are generated not only by flow over the hills but also by flow over ‘‘boundary-

trapped’’ lee waves and turbulent structures in the lee. Waves are visualized and their characteristics measured using a

nonobtrusive optical technique called ‘‘synthetic schlieren’’. Experimental results are compared with the predictions of

linear theory and Long’s model. For low values of the excitation frequency, the internal wave frequencies are consistent

with those predicted by linear theory. The wave amplitudes, however, are significantly lower than the hill amplitude, even

for the small hills that have a maximum slope of 0.3. This indicates the importance of nonlinear processes, such as

boundary layer separation, which act even for moderate hill slopes. When the excitation frequency exceeds the buoyancy

frequency, internal waves are still excited in the lee of the topography, with frequency an approximately constant fraction

of the buoyancy frequency. In these cases, boundary-trapped lee waves and turbulent structures are observed and couple

with vertically propagating internal waves.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Internal waves are generated whenever a stratified
fluid is perturbed at a frequency below the natural
frequency of vertical oscillation of the fluid (i.e. the
buoyancy frequency). The waves subsequently
propagate horizontally and vertically within the
e front matter r 2006 Elsevier Ltd. All rights reserved
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fluid, transporting energy and momentum away
from their source. Eventually, waves may become
unstable and break, depositing momentum and
energy to the background flow.

In the ocean, internal waves are a significant
source of mixing, which consequently redistributes
heat and so may influence the Earth’s climate
(Ledwell et al., 2000; Rudnick et al., 2003). Recent
observations in the deep ocean have shown that
waves are generated most significantly by the flow
of tides over the rough terrain of the ocean floor,
such as seamounts, ridges, and canyons (New and
.
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DaSilva, 2002; Rudnick et al., 2003; St. Laurent
et al., 2003). In many of these sites, energetic
turbulence has been observed (Ledwell et al., 2000;
Klymak and Gregg, 2004; Garabato et al., 2004)
and presumably results directly as a consequence of
flow over topography and wave breaking.

The characteristics of the internal wave field
generated by flow over bottom topography depend
on the observation time scale, as depicted in the
schematic of Fig. 1. When tidal flows are observed
on scales well above the inertial period, f �1, (e.g.,
days and/or months), the waves radiate mainly at
the fundamental frequency of the tide in both
upstream and downstream directions. However,
when the flows are observed over intermediate
time-scales close to the buoyancy period, N�1,
(e.g., minutes and/or hours), the flow resembles
uniform flow over topography and the waves
propagate only in the upstream direction with
phase speed �U and frequency �Uk relative to
k−1

f

(A) tobs > f −1

k−1

U

(B) N −1 < t obs < f −1<

Fig. 1. Different time-scales for observations of internal waves

(adapted from Dohan, 2004):(A) on time-scales longer than the

inertial period, tidal motion can be viewed as periodic and

generates internal waves at approximately the fundamental

frequency of the tides; (B) on time-scales less than the inertial

period, tidal motion can be viewed locally as uniform flow over

topography, with internal waves generated in only in the

upstream direction.
the flow. Here, U is the tidal flow speed and k�1

is the horizontal length scale of the topography.
N is the buoyancy frequency, which in the
Boussinesq approximation, is given in terms of the
background density, rðzÞ, a characteristic density,
r0, and the acceleration due to gravity, g, by
N2 ¼ �ðg=r0Þdr=dz.

St. Laurent and Garrett (2002) use the terms
‘‘internal tide’’ and ‘‘quasi-steady lee wave’’ to
describe the two regimes illustrated in Figs. 1(A
and B), respectively. The regimes are distinguished
using the tidal excursion parameter, Uk=o, which
compares the length of the tidal excursion, U=o, to
the horizontal scale of the topography, k�1, where o
is the tidal frequency. Thus, the ‘‘internal tide’’
regime is characterized by Uk=oo1 and the ‘‘quasi-
steady lee wave’’ regime by Uk=o41.

Another parameter used in classifying flow over
bottom topography is the steepness parameter,
� ¼ s=a. Here s is the topographic slope defined as
the ratio of the topographic height to length,
s ¼ Hk, and a is the slope of the wave beam,
defined as the ratio of the horizontal to vertical
wavenumbers, a ¼ kx=kz (¼ o=N for hydrostatic
flow). In circumstances satisfying �o1, the waves
are said to encounter ‘‘subcritical topography’’,
whereas they encounter ‘‘supercritical topography’’
if �41.

Much attention has been devoted to the ‘‘internal
tide’’ regime using both subcritical and super-
critical topography (e.g., recently by Llewellyn
Smith and Young, 2002, 2003; Balmforth et al.,
2002; St. Laurent and Garrett, 2002). Even so, the
properties of internal tides generated at supercritical
topography remain poorly understood (St. Laurent
et al., 2003). Here, we discuss the situation depicted
in Fig. 1(B), in which nonhydrostatic waves are
generated from steady flow over topography. In
such a case, there is no tidal frequency and so the
parameter � is insignificant and the mechanisms by
which internal waves are generated from topogra-
phy are poorly understood beyond the suppositions
of linear and inviscid theories.

In particular, linear theory restricts predictions of
topographically generated waves to those launched
by smooth hills with small aspect ratios of
topographic height to width, H=L. In such cases,
theory predicts that propagating waves will be
generated if the excitation frequency, oexc, is lower
than the buoyancy frequency, N. Here, oexc is
defined in terms of the flow speed, U, and the
topographic wavelength, l, (or equivalently the
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wavenumber, k ¼ 2p=l) as

oexc � U
2p
l
¼ Uk. (1)

The ratio of excitation to buoyancy frequency
defines a ‘‘horizontal’’ Froude number

Frh �
oexc

N
¼

Uk

N
. (2)

Thus, linear theory predicts that vertically pro-
pagating internal waves are generated if Frho1.
This we refer to as subcritical flow, which should
not be confused with subcritical topography. In this
case the maximum vertical displacement, Ax, of the
fluid due to waves equals H=2, half the peak-to-
peak height of the hills. When Frh41, which we
refer to as supercritical flow, the waves are termed
‘‘evanescent’’ meaning that the wave amplitude
decays exponentially. Frh also provides a measure
of hydrostatic balance, in particular the flow is
hydrostatic if Frh51.

In addition to Frh, an equally important para-
meter for studying stratified flow over topography is
the quantity NH=U , which is used as a measure of
nonlinearity introduced by a finite topographic
height. There is no standard symbol for this
quantity in the literature and thus, in this paper,
we will define a ‘‘vertical’’ Froude number by

Fr�1v �
NH

U
. (3)

Combining these two parameters gives FrhFr�1v ¼

Hk. Thus, the linear theory assumption can be
summarized by the condition that Hk51. In the
ocean, this is valid, for example, to describe tidal
flow over mid-ocean ridge topography with sub-
critical slopes and occurring on long time scales
(Lamb, 2004). However, it is not valid when
modeling flow associated with supercritical oceanic
trench systems such as the Hawaiian and Aleutian
ridges (St. Laurent et al., 2003). It is therefore
important to understand the limitations of applying
results from linear theory to such circumstances.
This paper will specifically examine the case of
Hk ¼ 0:6 and 1.2 on time-scales close to the
buoyancy period.

Long’s model extends linear theory to include
waves generated by steady, inviscid flow over finite-
amplitude topography, which does not include the
nonlinear dynamics of boundary layer separation
from steep slopes, flow stagnation in valleys or
turbulence. In real situations, such nonlinear and
unsteady effects can act to alter the generation of
internal waves. The purpose of the present research
is to use laboratory experiments to investigate the
ways in which internal waves are generated from
flow over and in the lee of finite-amplitude
topography, including the nonlinear effects de-
scribed above, and to determine the corresponding
limitations of linear and inviscid theories.

Boundary layer separation occurs when fluid
flowing over an obstacle encounters an adverse
pressure gradient, which decelerates the fluid and
causes the boundary layer to separate from the
obstacle. In the context of flow over topography,
this can occur on the lee-side slopes of both isolated
and periodic hills provided that the flow is
sufficiently energetic and/or the hills sufficiently
steep.

According to Baines (1995), separation should
occur for NLh=Uop (Frh41) and complete attach-
ment for NLh=U4p (Frho1), where Lh is the half-
width of the obstacle (whether isolated or part of a
range). However, separation can still occur at lower
Frh values, provided that Fr�1v and H=Lh are
sufficiently high. This will be of particular interest
in our experiments, which have relatively large
values of H=Lh and Fr�1v �1 (where Lh ¼ l=2 for
sinusoidal topography). We hypothesize that for
experiments with tall and steep topography, bound-
ary layer separation will eventually become
independent of Frh, being controlled predominately
by Fr�1v .

When fluid separates from the lee-side slope of an
isolated hill (or the last in a range of hills), the
formation of a stationary, undulating shear layer
downstream of the hill, sometimes called a ‘‘bound-
ary-trapped’’ lee wave, may result. This is an
example of what Baines (1995) calls ‘‘post-wave’’
separation. Beneath the crests of the lee waves lies
either stagnant or mixed fluid, depending on the
flow speed. Flow over these ‘‘fluidic’’ hills has been
identified as a possible mechanism of internal wave
generation (Sutherland, 2002).

Laboratory experiments performed by Suther-
land (2002) examined stratified flow over a
‘‘smooth’’ step and showed that vertically propagat-
ing internal waves and boundary-trapped lee waves
were generated with frequency a constant fraction
of the buoyancy frequency, approximately 0.75N

for Fr�1v o1 and moderately smaller values for
larger Fr�1v . Sutherland observed that the generation
of internal waves was coupled to that of lee waves
and suggested that this may be an important factor
in mixing over rough topography in the ocean. This
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study did not, however, capture the dynamics of the
flow of fluid into and out of the valleys of
topographic features such as mountain ridges on
land or sea mounts and canyons on the ocean floor.
The present research is thus an extension of this
work to include the more complex dynamics of flow
over, between, and in the lee of finite-amplitude
sinusoidal hills.

In the case of periodic topography, through
boundary layer separation, stagnant fluid may
remain trapped within the valleys. The formation
of stagnant fluid thus reduces the effective overall
hill height for wave generation. The depth of these
‘‘blocked layers’’ increases slightly with increasing
Fr�1v (Baines, 1995). Using numerical simulations,
Welch et al. (2001) examined the formation and
properties of blocked layers between finite-ampli-
tude sinusoidal hills. They found that blocked layers
were formed when Fr�1v exceeded a certain thresh-
old, between 0.5 and 1. Also, once the hill height
reached a certain threshold, the height of the
blocked layer was found to increase linearly with
H so as to achieve a relatively constant effective hill
height, Heff . The constancy of Heff suggested that
flow with background N and U could only sustain
waves of a certain amplitude.

Turbulence above and in the lee of periodic
topography may be created if the flow speed is
sufficiently high and the topography sufficiently
steep. There have been relatively few studies of
turbulence (coherent or random) as a generation
mechanism of internal waves (Linden, 1975; Car-
ruthers and Hunt, 1986; Dohan and Sutherland,
2003). In a recent adaption of experiments by
Linden (1975), Dohan and Sutherland (2003)
examined the excitation of internal waves from
random small-scale turbulent forcing above a
stationary stratified fluid. Despite the random
nature of the forcing, the resulting wave frequencies
were found to lie in a narrow range. This same
result was found in corresponding two-dimensional
numerical simulations (Dohan, 2004).

Sutherland and Linden (1998) performed labora-
tory experiments to investigate the excitation of
internal waves from a turbulent shear flow over a
thin barrier. In their study, a coupling was observed
between coherent turbulent structures shed in the
lee of the barrier and the internal waves that
radiated from the mixing region. In particular,
internal waves were observed to propagate with the
same length-scale and horizontal phase speed as
disturbances at the base of the mixing region. Part
of the work presented here extends the research on
turbulence generation to examine the situation of
supercritical flow over sinusoidal topography and to
determine the effects of turbulence created in the lee
of topography upon wave generation.

In Section 2, we introduce the experimental set-
up, including methods for wave visualization and
techniques for determining wave properties such as
frequency, wavenumber and amplitude. In Section
3, we present qualitative experimental observations,
followed by quantitative results in Section 4. In
Section 5, we introduce Long’s theoretical model
and its solution method, and we compare its
predictions against our experimental findings. Dis-
cussion and conclusions are presented in Section 6.

2. Experimental methods

2.1. Apparatus

Experiments were performed in a glass tank
having dimensions 197 cm long by 50 cm high by
17.5 cm wide. The tank was filled with uniformly
salt-stratified water to a depth of approximately
27 cm. This was accomplished using the standard
‘‘double-bucket’’ technique (Oster, 1965). The back-
ground density field, rðzÞ, was obtained by traver-
sing a conductivity probe down through the tank
before each experiment. A schematic illustrating
the tank dimensions and a typical back-
ground density profile is given in Fig. 2(A). The
buoyancy frequency was determined directly from
the slope of the best-fit line to the density profile.
With some exceptions, its typical value was
N ¼ 1:10� 0:02 s�1.

Although the fluid had finite depth, the experi-
ments were performed over such short periods of
time ð�30280 sÞ that the vertically propagating
internal waves did not reach the tank bottom before
the experiments finished. Thus, the effect of the
bottom boundary was negligible and the experi-
ments effectively modeled wave propagation in an
infinite-depth fluid.

Two spanwise uniform sinusoidal topographies of
different peak-to-peak hill heights, H ¼ 1:3 and
2.6 cm, were used. The topographies spanned four
hill wavelengths with l ¼ 13:7 cm, giving relative
hill heights of H=l � 0:1 and 0.2, respectively. In
this paper, the two topographies will be referred to
as ‘‘small-amplitude’’ and ‘‘large-amplitude’’. Note
that the small-amplitude hills are in fact quite large
with H=l � 0:1.
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(A) Front view of tank and towing apparatus

50
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(B) Side view of synthetic schlieren set-up

camera

image analysis tank screen lights

Fig. 2. (A) Front view of tank and towing apparatus. The motor is mounted above the tank. A belt is attached to the topography and runs

around a series of pulleys. When the motor is turned on, the topography moves from left to right at an approximately constant speed, thus

exciting internal waves. (B) Side view of the experimental configuration for the synthetic schlieren technique. The technique records the

distortion of the image of horizontal lines due to density fluctuations within the tank. The density fluctuations are the result of internal

wave motion.
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To simulate uniform flow over topography,
model sinusoidal hills were towed along the surface
of the fluid at an approximately constant speed.
This was achieved using a towing apparatus
consisting of a motor, five pulleys, and a belt that
was fixed to the model topography (see Fig. 2(A)).
Because the density difference between the salt
water at the top and bottom of the tank was small
compared to the density of the water itself, the fluid
was Boussinesq. Hence there is no dynamic
difference between waves propagating down-
ward from topography towed along the top of the
tank and waves propagating upward from topo-
graphy towed along the bottom of the tank. The
model hills were towed at speeds ranging from
U ¼ 0:924:9 cm s�1. The corresponding horizontal
and inverse vertical Froude numbers ranged from
Frh ¼ 0:222:0 and Fr�1v ¼ 0:2926:07.

As Frh increased, the flow between and in the
lee of the hills underwent a transition to turbulence,
which altered the generation of waves from
direct topographic generation to indirect turbulence
generation via flow over coherent turbulent struc-
tures in the lee of the topography. The relationship
between the turbulent structures and the cor-
responding internal waves is examined in
Section 3.2.

The Reynolds number, based on L, ranged from
ReL � 100025000. Although significantly smaller
than typical ocean values �109, the experimental
values are still large enough that viscous effects
should be important only insofar as boundary layer
separation and turbulence damping time scales are
concerned. Boundary layer separation occurs even
for high Reynolds number geophysical flows if the
topography is sufficiently steep and internal wave
generation by turbulence is affected by integral
length and time scales, not the viscous scales of
turbulence. Therefore, the experimental results
should be relevant to realistic circumstances in the
ocean.

The experiments were recorded using a digital
camera situated approximately 340 cm in front of
the tank. The recorded images in the x–z plane were
analyzed using the image processing software
package, Digimage (Dalziel et al., 2000). The
analysis of these images is described further in the
following subsections.
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2.2. Synthetic schlieren technique

The synthetic schlieren technique was used to
measure nonobtrusively the two-dimensional inter-
nal wave field as it evolved in time (Dalziel et al.,
2000). The technique is based on how light is
deflected to a greater or lesser degree as it passes,
respectively through stronger or weaker density
gradients. The experimental configuration is illu-
strated schematically in Fig. 2(B).

A 50 cm long by 30 cm high translucent screen of
horizontal black and white lines was placed behind
the tank. Situated behind the screen was a bank of
fluorescent lights, which illuminated the screen. The
field-of-view of the camera was set such that a
minimum of eight pixels covered the width of a
single horizontal line. This generally resulted in a
field-of-view measuring approximately 25 cm in the
Fig. 3. Snapshot images taken from the featured experiment (A) before

through a distance of one hill wavelength. Subtracting intensities in (A

image (C). The corresponding Dz field is shown in (D), where the grey-s

x ’ 22 cm in (A) and the tilted line in (B) is the result of dye laid down

white streak in (C) but is filtered in computing Dz, as shown in (D). Para

Frh ¼ 0:41, Fr�1v ¼ 2:94, Hk ¼ 1:2.
horizontal and 20 cm in the vertical, sufficiently
large to capture the internal waves generated near
the topography. A sample field-of-view is given
in Fig. 3(A), which shows an image taken im-
mediately before the start of an experiment. The
experiment used the large-amplitude hills towed at a
moderate speed, hereafter referred to as the featured
experiment.

When internal waves move within the tank, they
stretch and compress isopycnal surfaces, thereby
changing the local density gradient. This conse-
quently changes the local gradient of the index of
refraction of the fluid so that the horizontal lines
appear to be displaced. Fig. 3(B) shows an image
taken during the featured experiment, after the hills
have been towed through a distance of one hill
wavelength. The distortion of the horizontal lines
compared to the initial image in Fig. 3(A) is barely
the start of the experiment and (B) after the hills have been towed

) from (B) and scaling yields the qualitative synthetic schlieren

cale range is between �0:08 and 0.08 cm. The vertical grey line at

by potassium permanganate crystals. This shows up as a vertical

meter values for this experiment are H ¼ 2:6 cm, U ¼ 0:97 cm s�1,
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visible. By taking the difference between the images
in Figs. 3(A and B), we obtain the qualitative
synthetic schlieren image given in Fig. 3(C). The
intensity difference between the images is multiplied
by a factor of 2 to reveal clearly the regions having
the greatest displacement, namely the wave crests
and troughs.

By measuring the displacement of the lines from
their initial position, Dzðx; z; tÞ, the change in the
squared buoyancy frequency can be directly calcu-
lated:

DN2ðx; z; tÞ ¼ �
g

r0

dr
dz
’ aDzðx; z; tÞ, (4)

where a is a constant that depends on the tank
width, the distance from the tank to the screen, the
indices of refraction of salt water and air, and the
gravitational constant g (Sutherland et al., 1999). In
our experiments, a ¼ 6:5 s�2 cm�1. A sample Dz field
is shown in Fig. 3(D). Because (4) assumes
disturbances across the tank are spanwise uniform,
the computed wave field is reliable only away from
the mixing near the hilltops.

From such images, the horizontal and vertical
wavelengths can be estimated by measuring the
horizontal and vertical distances between successive
wave crests or troughs. For example, from Fig. 3,
lx � 11 cm and lz � 7 cm, which correspondingly
gives wavenumber components kx � 0:57 cm�1 and
kz � 0:90 cm�1. Rigorous quantitative methods for
determining these quantities are presented in Sec-
tion 4.1. Consequently, the angle of wave propaga-
tion to the vertical, Y, (or equivalently, the angle
formed by lines of constant phase with the vertical)
can be estimated using the relation

tanY ¼
kz

kx

. (5)

For this example, Y � 58�. Alternately, the angle
can be estimated from the relative wave frequency
using the dispersion relation

cosY ¼ o=N. (6)

In addition to calculating DN2, the time-derivative
of the squared buoyancy frequency, N2

t , can be
calculated by measuring the displacement of
the horizontal lines between two short successive
times. The time interval used in our experiments
was Dt ¼ n=30 s, where n ¼ 1, 2, 3, 4, or 5 depending
on the towing speed. In all cases, Dt was much
smaller than a typical wave period ðT � 10 sÞ,
but large enough to give a substantial signal from
the waves.

From the DN2 field, the vertical and horizontal
velocity fields can be estimated using linear theory.
Similarly, the vertical displacement field, x, can be
estimated from the N2

t field. These estimates are
reasonable for small-amplitude disturbances up to
Ax=lx � 0:2. For the purposes of performing
qualitative and quantitative analyses, the N2

t field
was preferred for three reasons: it was in phase with
the vertical displacement field, x; it could be
determined even for large-amplitude waves, which
significantly distorted the background image; and it
filtered long time-scale changes, thus capturing the
signal from propagating waves uncontaminated by
the development of columnar modes.

2.3. Time series analyses

Time series of N2
t were used both to visualize the

internal wave field and to quantitatively determine
fundamental wave properties such as frequency,
wavenumber, amplitude. Vertical time series,
N2

t ðz; tÞ, illustrate the time evolution of a vertical
slice through images of an experiment at a single
horizontal location, whereas horizontal time series,
N2

t ðx; tÞ, illustrate the time evolution of a horizontal
slice at a single vertical location. Fig. 4 shows
sample vertical and horizontal time series for the
featured experiment. Here, the horizontal time
series has been reconstructed using 18 equally
spaced vertical time series images spanning the
entire field-of-view. The images have been enhanced
using low-pass filters to remove high-frequency
thermal and electronic noise and using Fourier
filters to remove low-frequency thermal variations.
From Fig. 4(A), lines of constant phase move
upwards as times evolves, consistent with the linear
theory prediction that energy is transported down-
wards and away from the hills. Fig. 4(B) shows that
the waves move from left to right, in the same
direction toward which the topography is towed.

The frequencies and wavenumbers of the internal
waves were determined from the peaks of the power
spectra of the N2

t time series (see Section 4.1). The
half peak-to-peak amplitude of the N2

t field, AN2
t
,

was determined by taking the root-mean-squared
average in time and then multiplying by a factor offfiffiffi
2
p

. For the purpose of making quantitative
comparisons among experiments, a characteristic
wave amplitude value was obtained by spatially
averaging the root-mean-squared value. The
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Fig. 4. Sample (A) vertical and (B) horizontal time series of N2
t for the featured experiment. Time t ¼ 0 s corresponds to the start of

towing. The vertical time series is taken at a horizontal location corresponding to the initial position of the first hill crest (at x ¼ 15 cm in

Fig. 3(A)). The horizontal time series is taken at a vertical location 5 cm below the hill crest. The light and dark bands are the wave crests

and troughs, which move upwards and to the right as time evolves and the waves propagate downward and to the right. The grey-scale is

arbitrary for the purpose of this figure.
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Fig. 5. Summary of experiments in terms of horizontal and

inverse vertical Froude numbers. Linear and nonlinear regimes
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averaging window was selected to isolate the waves
and generally extended across a minimum of one
wavelength in both directions, beginning at least
5 cm below the peak of the topography (see Section
4.1 for further details). This location was sufficiently
far from the local mixing region where the schlieren
technique did not accurately measure N2

t . The
amplitude of vertical displacement, Ax, was esti-
mated from AN2

t
using the relation for Boussinesq

linear plane waves in a uniformly stratified fluid,
given by

AN2
t
¼ kxN3 sinYAx,

¼ 2pN3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fr2h

q
Ax

lx

ð7Þ

in which Y is given by (6) and Frh is given by (2).
are identified using Fr�1v , while propagating and evanescent waves

are identified using Frh. The open circles are for the small-

amplitude hills with relative amplitude ðH=2Þ=l ¼ 0:047 or

Hk ’ 0:6, and the closed circles are for the large-amplitude hills

with ðH=2Þ=l ¼ 0:095 or Hk ’ 1:2.
3. Qualitative observations

3.1. Internal wave fields

Recall that linear theory predicts propagating
waves are generated if Frho1 and the waves are
evanescent otherwise. For linear theory to be valid,
we require both Fr�1v 51 and Hk ¼ Frh=Frv51.
Fig. 5 summarizes the experiments we have per-
formed in terms of Frh and Fr�1v . We have focused
on the weakly (Fr�1v t1) and strongly (Fr�1v 41)
nonlinear regime because it lies beyond well-
established theory and because for very small-
amplitude hills, the generated internal waves are
too small to be accurately measured above signal
noise.

To illustrate the properties of internal waves as
they depend on towing speed and topographic
height, we compare four vertical time series of N2

t .
Two are taken from experiments using the small-
amplitude hills and two from those using the large-
amplitude hills (see Fig. 6). The vertical time series
are taken at a horizontal location corresponding to
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Fig. 6. Vertical time series of N2
t [s
�3] for the small- and large-amplitude hills for the cases of Frho1 (A,B) and Frh41 (C,D). Vertical time

series of the near-hill region of the raw images are superimposed to help visualize the correlation of the vertically-propagating internal

waves relative to the topography and to observe boundary layer separation and boundary-trapped lee waves (see Section 3.2).

D.A. Aguilar et al. / Deep-Sea Research II 53 (2006) 96–115104
the initial position of the first hill crest, thus
capturing the movement of the remaining three hill
crests through this location. The range of colour
contours for the large-hill images is twice that for
the small-hill images, thus highlighting the ampli-
tude relative to the topographic height.

Figs. 6(A and B) presents cases where Frho1
while Figs. 6(C and D) presents cases where Frh41.
For conceptual convenience in imagining flow over
bottom topography, the images have been flipped
vertically and the z-axis has been rescaled such that
z ¼ 0 corresponds to the bottom of the topography.
The near-hill region of the vertical time series of the
raw image is superimposed at the bottom of the
frame. This is done to reveal flow structures in the
valleys and lee of topography and so illustrate the
relationships between the excitation mechanisms
and the resulting wave fields. In any case, quanti-
tative schlieren cannot be used to compute wave
amplitudes in this region where the image of
horizontal lines is often blurred by turbulence.

The regularity of the wave field for Frho1 is
evident for both hills in Figs. 6(A and B).
Comparing the horizontal distance between succes-
sive hilltops to the distance between successive crests
or troughs, they are approximately the same. This is
consistent with the expectation based on linear
theory that the internal waves generated in these
cases have frequencies that match the excitation
frequencies. Two subtle, yet important, distinctions
can be made between the images in Figs. 6(A and
B). The first concerns waves generated directly over
the hills, in which case the amplitude of the wave
field relative to the hill height is slightly greater in
the small-amplitude hill experiments. The second
concerns the waves in the lee of the last hills, in
which case a significant increase in amplitude is
evident for the large hills and only a slight increase



ARTICLE IN PRESS
D.A. Aguilar et al. / Deep-Sea Research II 53 (2006) 96–115 105
for the small hills. This increase is associated with
the flow structure in the lee of the last hill (see Fig.
6(B)) and is described in the next subsection.

In Figs. 6(C and D), corresponding to super-
critical wave excitation (Frh41), propagating inter-
nal waves are not generated directly over the
topography but are observed, however, in the lee.
These lee waves have longer periods, despite their
rapid period of excitation. The generated wave
frequencies, determined from the distance between
successive crests or troughs in Figs. 6(C and D),
are approximately equal, even though the hill
heights, towing speeds, and relative amounts of
turbulence are different. There is some evidence
of high frequency, evanescent waves in the
initial stages of the experiments. However, these
motions decay before the hills pass and do not
persist in the lee.

3.2. Boundary layer separation

In this subsection, we qualitatively examine the
region near and in the lee of the hills in order to
understand the generation of the previously pre-
sented wave fields. We select six sample vertical time
Fig. 7. Sample vertical time series of the near-hill region, illustrating t

The images on the right (B, D, and F) are those for the large-amplitude h

Frh. For large Frh, the region in the lee becomes turbulent, although s
series of the near-topography region, which illus-
trate well the effects of increasing Frh and H.

Figs. 7(A and B) compares images having Frho1.
For the small hills, there is little distortion of the
horizontal lines. However, for the large hills, there
are significant distortions both between the hills and
directly in their lee. In particular, in Fig. 7(B) the
flow over and between the hills ðt � 0220 sÞ
separates from the lee-side slope of the hills,
forming stagnant patches of fluid between the hills
and reducing the effective hill height. This helps to
explain the decreased relative wave amplitude
observed in Fig. 6(B) compared to 6(A) for
t � 0225 s.

In the lee of the last hill ðt � 20240 sÞ shown in
Fig. 7(B), the distortion of the lines reveals an
undular shear layer, which begins where the
boundary layer separates from the lee-side of the
last hill. This undular shear layer, or boundary-
trapped lee wave, is similar to that observed
downstream of a single ‘‘Witch of Agnesi’’ hill in
three experiments by Baines and Hoinka (1985)
(with parameter values Fr�1v ¼ 0:8, 0.9, and 1.1
based on total hill height and, respectively,
Frh ¼ 3:2, 2.8, and 2.3 based on hill half-width),
he distortion due to boundary-trapped lee waves and turbulence.

ills. Boundary-trapped lee waves are generated for a wide range of

till present is a well-defined boundary-trapped lee wave.
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and downstream of a smooth step as observed in a
range of experiments by Sutherland (2002).

A similar lee structure is observed at all Frh values
for the large hills, yet only for select values for the
small hills, particularly Frh\1. For example, a
boundary-trapped lee wave is clearly distinguishable
in Fig. 7(C) but not in (A).

Figs. 7(D and F) illustrates the effect of increasing
Frh on the lee structure of the large hills. In
particular, as Frh increases, the flow in the lee
becomes increasingly turbulent. Even so, there
remains a coherent boundary-trapped lee wave
separating the turbulent mixed regions from the
remaining fluid above, the structure of which
remains relatively constant.

For the small hills, turbulence is also generated,
although to a much smaller extent (compare for
example Fig. 7(E) with (F)). As a result, the
structure of the boundary-trapped lee wave is more
difficult to identify. In all cases where boundary-
trapped lee waves are formed, the wave is stationary
with respect to the topography. The relationship
between the boundary-trapped and resulting verti-
cally propagating internal waves is quantified in
Section 4.2.

4. Quantitative results

4.1. Power spectra

Internal wave frequencies and wavenumbers are
determined quantitatively from the N2

t fields using
spectral methods. The choice of whether to use the
vertical or horizontal time series depends on the
types of wave features present. In particular, for the
slower tow-speed experiments, the vertical time
series are preferred because they clearly distinguish
between the waves generated over and in the lee of
the topography, as seen in Fig. 6(B) for example.
Thus, windows can be carved from the original time
series to isolate the different waves and then spectral
methods can be applied separately to each window.

For example, for the time series given in Figs. 6(A
and B), a window can be carved from t ¼ 0–25 s to
isolate the topographically generated waves and
from t ¼ 25–50 s to isolate the waves generated in
the lee. Fig. 8 displays these two windows and the
corresponding power spectra obtained by perform-
ing a two-dimensional Fourier transform on each of
the windows. The location of the peak is used to
measure the dominant frequency and vertical
wavenumber. In this case, ðo; kzÞ � ð0:59;�0:56Þ
for the waves over the hills and ðo; kzÞ �

ð0:61;�0:66Þ for the waves in the lee. By averaging
the peak values from time series at eight equally
spaced horizontal locations spanning approximately
two hill wavelengths, representative values are
obtained. For this experiment, these are o ¼ 0:59�
0:06 s�1 and kz ¼ �0:59� 0:14 cm�1 for the waves
over the hills and o ¼ 0:62� 0:06 s�1 and kz ¼

�0:66� 0:14 cm�1 for the waves in the lee, where
the uncertainties are set by the resolution of the
images.

For faster tow-speed experiments, where large-
scale waves are generated in the lee, horizontal time
series are preferred. This is because, in many cases,
the vertical extent of the waves exceeds the vertical
field-of-view and thus, the measurements of kx are
more reliable than those of kz. Horizontal time
series also have the advantage of capturing
the movement of waves generated at the same time.
Fig. 9 shows a horizontal time series for the
experiment of Fig. 6(D), along with its power
spectrum. The horizontal time series is taken at a
vertical location 15 cm below the peak of the
topography. Again, by averaging the peak values
of eight equally spaced slices spanning approxi-
mately 10 cm, we obtain characteristic values, kx ¼

0:20� 0:10 cm�1 and o ¼ 0:55� 0:09 s�1.
After having determined o and one of either kx or

kz, the other wavenumber component can be
estimated using the dispersion relation o ¼ Nkx=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x þ k2

z

q
.

In both Flynn and Sutherland (2004) and Dohan
and Sutherland (2003), the estimates of o and kx (or
kz) are obtained by further averaging the co-
spectrum over all kx (or kz) to determine o and
over all o to determine kx (or kz). We found that the
values obtained using this method were within the
range of uncertainty of those determined from the
peaks of the power spectrum. For example, Figs.
9(C and D) gives the averaged kx and o profiles
determined from the power spectrum in Fig. 9(B).
The location of the peaks of these profiles are in
agreement with the location of the peak of the
power spectrum, as expected. Thus, the results
presented in this paper are those obtained from the
average peak location of the power spectrum.

4.2. Wave frequencies

Using the methods of the previous subsection,
internal wave frequencies are determined for all
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Fig. 8. Select windows of the vertical time series of N2
t [s�3] for the experiment shown in Fig. 6(B). The window in (A) isolates waves

generated directly over the hills, whereas (C) isolates those generated in the lee. In (B) and (D) are the frequency and vertical wavenumber

co-spectra determined from the images in (A) and (C), respectively.
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experiments. The results are summarized in Fig. 10,
which plots the relative internal wave frequency,
o=N, as a function of the relative excitation
frequency, oexc=N ¼ Frh. Solid and open markers
distinguish between waves generated directly over
the hills and those generated in the lee, respectively.
A vertical line clearly distinguishes two regimes, the
first of which is termed the ‘‘propagation regime’’
where Frho1. In this regime, we see that the
observed frequency of vertically propagating waves
over the hills agrees well with the excitation
frequency for sufficiently small Frh, but with
significant departures occurring for 0:7oFrho1.
Thus, the linear theory prediction is valid for
Frht0:7 even though Fr�1v is of order unity (see
Fig. 5) and hence, the forcing mechanism nonlinear.
This result holds both for the small- and large-
amplitude hills. In this regime we also notice that
the frequency of the waves generated in the lee
of the large-amplitude hills matches that of
the topographically generated waves, again with
significant departure for 0:7oFrho1.

In the ‘‘evanescent’’ regime for which Frh41,
propagating waves are no longer generated over the
hills but nonetheless occur immediately in the lee of
the range. The towing speed is so fast that the fluid
does not traverse the valleys but rather flows over
them, resembling flow over a single ‘‘envelope’’ of
hills or a plateau. This ‘‘plateau effect’’ has been
used to describe flow over the coastal terrain of the
Western United States and Canada (Braun et al.,
1999). To leading order, the waves in the lee are
generated as a result of flow down the trailing slope
and in this sense resemble the waves generated by
flow over a smooth step as examined by Sutherland
(2002). As in that study, here we find the wave
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Fig. 9. The frequency and vertical wavenumber spectra and co-spectrum for the experiment shown in Fig. 6(D). In (A) is the horizontal

time series of N2
t taken at a vertical location 15 cm below the peak of the hills. In (B) is the power co-spectrum determined from (A). The

kx � o spectrum is averaged over all o values, resulting in the kx-profile given in (C). Similarly, the o-profile obtained by averaging over

all kx values is given in (D).
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frequencies are an approximately constant fraction
of the buoyancy frequency, N. In particular,
o=N � 0:51� 0:02. One might anticipate the ratio
o=N should be constant: if the horizontal length-
scale, L, associated with the generation can be
neglected, then the frequency must be determined
by N�1, not L=U . It is nonetheless remarkable that
the frequency remains constant in the presence of
vigorous turbulence and, as we show in Section 5,
that the waves persist with this frequency further
downstream of the last hill than predicted by Long’s
model, which neglects turbulence.

As in Sutherland (2002), here we hypothesize that
the waves are generated further downstream not
only as a consequence of flow over the trailing slope
of the envelope topography, but also through
coupling with boundary-trapped lee waves. If the
propagating and boundary-trapped waves are indeed
coupled, we might expect their frequencies to match.
Using vertical time series images, the frequency of
a boundary-trapped lee wave, olee, is determined
approximately by measuring the time between the
last hill crest and first crest of the hump-shaped
disturbance, as shown, for example, in Fig. 7(D),
which gives T lee � 8 s. Fig. 11 compares the
vertically propagating and boundary-trapped lee
wave frequencies for all applicable experiments.
When Frho1, the frequencies match well. In such
cases, olee � o � oexc. Like the propagating wave
frequency, when Frh41 the boundary-trapped lee
wave frequency is approximately constant but
generally higher than o=N. This is consistent with
the study by Sutherland (2002), which found similar
relationships between the propagating and bound-
ary-trapped lee wave frequencies generated by a
step-shaped topography.

As a way of providing a convenient summary of
our experimental results, we have fit an empirical
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formula to the frequency data of Fig. 10. The
formula is of the form

f � wf 1 þ ð1� wÞf 2, (8)

in which f 1 and f 2 describe the behaviour in the
subcritical and supercritical regimes, respectively,
and w is a weighting function. Explicitly, the
empirical fit to the observed wave frequencies is

o=N ¼ w½tanhðFrhÞ� þ ð1� wÞ½0:5�, (9)

in which the weighting function is given by

wðFrhÞ ¼ 0:5ð1� tanh½10ðFrh � 1Þ�Þ. (10)

The graph of this function is given as a dashed line
in Fig. 10. The empirical fit to the data is very good,
in most cases well within the uncertainty of the
measurements.

4.3. Wave amplitudes

Fig. 12 plots the relative internal wave ampli-
tudes, 2Ax=H, as a function of the horizontal
Froude number, Frh. As in Fig. 10, a vertical line
divides the plot into two regimes and a thick
horizontal line gives the linear theory prediction.
Although linear theory predicts that the amplitudes
of the waves generated over the hills should equal
the hill amplitude for Frho1, this is clearly not the
case. The wave amplitudes are significantly smaller,
even for those generated over the small hills and
especially for those generated over the large hills.
This is an indication that nonlinear processes are
important even for relatively smooth topography
with H=l ¼ 0:1.

We saw earlier (Fig. 7(B)) for a case of Frho1
and H=l ¼ 0:2 that fluid separated from the lee-side
slopes of each hill and formed patches of trapped
fluid in the valleys. This reduced the effective hill
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height. The important parameter that determines
such separation is Fr�1v ¼ NH=U . This parameter
increases with increasing H or decreasing U, both of
which contribute to generating adverse pressure
gradients allowing for boundary-layer separation.

In our experiments (with the exception of one
anomaly), the experiments with Fr�1v 41 and thus,
Frho1 according to Fig. 5, generated waves over
the hills having the smallest amplitudes, 2Axt0:4H.
It is in these cases that the nonlinear process of
boundary-layer separation dominates and signifi-
cantly reduces the effective hill height. The majority
of these experiments are for the large hills where we
would expect nonlinear effects to be greater.

Fig. 13 presents vertical time series of the near-hill
region for the experiments with the highest Fr�1v

values (Fr�1v \3). In these cases, the effects of
boundary-layer separation and flow blocking are
most extreme and the resulting wave amplitudes are
lowest. Comparing Fig. 13(A) with (B), increasing
H acts to increase the height of the blocked layer,
while maintaining a relatively constant effective hill
height as far as wave generation is concerned. This
is consistent with the constancy of Heff found by
Fig. 13. Vertical time series images of the near-hill region for

experiments with large Fr�1v . The effects of flow separation and

consequent trapping of fluid in the valleys are evident in all cases.

The height of the blocked layer increases with increasing H

(compare (A) with (B)) and decreases with increasing U (compare

(B) with (C)).
Welch et al. (2001). In experiments with larger
towing speeds and thus smaller Fr�1v (Fig. 13(C)),
separation still occurs but further downstream the
lee slope compared with that in Fig. 13(B). The
experiments show that for fixed Frh, Fr�1v limits the
effective hill height and thus, the amplitudes of
waves generated over the hills.

Apart from the waves generated over the hills,
Fig. 12 also gives the amplitudes of the waves
generated in the lee of the hills, which result from
flow over the lee-side slope of the last hill and the
boundary-trapped lee wave as discussed earlier. For
Frho1, only those waves generated in the lee of the
large hills are included. This is because the small
hills failed to generate well-defined boundary-
trapped lee waves and as a result, the amplitude of
the wave field increased only slightly in the lee.
From Fig. 12, the amplitudes of the waves generated
in the lee of the large hills are greater than those
generated over the hills, varying from 10–40%
greater. This is expected because the waves are
generated in part by flow over the larger-amplitude
boundary-trapped lee waves.

In the supercritical regime (Frh41), the propa-
gating lee wave amplitudes remain large for the
large-amplitude hills (2Ax=H � 0:39� 0:20) but
decrease significantly for the small-amplitude hills
(2Ax=H � 0:14� 0:09). These average values are
presented as dashed lines in Fig. 12. Because the
propagating and boundary-trapped lee wave fre-
quencies do not match in this case (Fig. 11), we
conclude that the waves are generated by a
combination of flow over envelope topography
and the boundary-trapped lee wave. We know the
boundary-trapped lee wave continues to play a
significant role because the propagating wave
amplitudes are larger for the large-amplitude hills
and the corresponding boundary-trapped lee waves
also have significantly larger amplitudes (compare,
for example, Fig. 7(E) with (F)).

4.4. Analysis

The vertical flux of horizontal momentum, Fuw,
can be determined using the measured amplitudes
and frequencies according to linear theory

Fuw ¼
1
4
r0N2 sinð2YÞA2

x. (11)

The momentum fluxes for a range of experiments
are plotted as a function of the horizontal Froude
number in Fig. 14. Here, the measured fluxes,
Fmeas, are normalized by the maximum flux
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predicted by linear theory, Fmax ¼
1
4
r0N

2ðH=2Þ2. A
curve representing the momentum flux that would
result if Ax ¼ H=2 is provided for reference. The
general trends are similar to those of Fig. 12. Note
that the measured values are consistently below the
theoretical values for Frho1. Due to their larger
amplitudes for Frh41, the waves generated from
the large-amplitude hills are able to transport
momentum where linear theory predicts there to
be no waves.

As a way of summarizing the amplitude and
frequency results presented thus far, we present
them in the form of a stability diagram in Fig. 15
(Flynn and Sutherland, 2004; Dohan and Suther-
land, 2003). This figure includes the critical ampli-
tudes for two types of internal-wave instabilities,
namely overturning (denoted ‘‘OT’’) and self-accel-
eration (denoted ‘‘SA’’). Overturning refers to the
instability that occurs when dense fluid overlies less
dense fluid. The critical relative amplitude for this
instability is given by

AOT ¼
1

2p
cot Y. (12)

Self-acceleration occurs when the wave-induced
mean flow approaches the horizontal group velocity
of the waves. The effect is to alter wave propagation
and particularly, increase wave amplitude. When
the wave-induced mean flow exceeds the horizontal
group velocity, then the waves may become unstable
and break. The critical relative amplitude for this
instability is given by (Sutherland, 2001)

ASA ¼
1

2p
ffiffiffi
2
p sin 2Y. (13)

There are two main observations to be made from
Fig. 15. First of all, with the exception of the open
triangles, the waves are relatively large in the sense
that the wave amplitudes are 2–4% of the hor-
izontal wavelengths and 20–40% of the breaking
amplitudes. Secondly, for the case of Frh41, the
angles of propagation to the vertical lie in a very
narrow range about Y � 58�, corresponding to the
narrow frequency range. Such a narrow range has
been observed in other studies involving the
dynamic generation of internal waves, as summar-
ized in Table 1. In particular, the results from flow
over boundary-trapped lee waves are similar to
those of Sutherland and Linden (1998) and Flynn
and Sutherland (2004), who studied stratified flow
past a thin barrier and intrusive gravity currents,
respectively. The resulting mechanism of wave
generation in both cases was similar to that
observed in our experiments, in particular flow over
an undular coherent structure.

5. Comparison with Long’s model

Here we compare the theoretical results of Long’s
model (Long, 1953) with our experiments. Long’s
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Table 1

Comparison of angle of wave propagation and relative wave amplitude for five studies involving the dynamic generation of internal gravity

waves

Study Mechanism of wave excitation Yð�Þ Az=lx

Linden (1975) Stationary turbulence � 35 N/A

Sutherland and Linden (1998) Turbulent shear flow 46–60 0.003–0.03

Dohan and Sutherland (2003) Stationary turbulence 42–55 0.02–0.04

Flynn and Sutherland (2004) Intrusive gravity current 41–64 0.005–0.02

Present study Boundary-trapped lee waves 57–63 0.01–0.03
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model is an equation for the steady streamfunction
perturbed due to flow over topography of arbitrary
amplitude. As such, it is an improvement over linear
theory which, strictly speaking, is applicable only
for wave generation from infinitesimally small
amplitude hills. Even so, we do not expect excellent
agreement between Long’s model and our experi-
ments because the model assumes the flow over
topography is steady, inviscid, and free-slip, and so
does not take into account the initial transient
development of the waves, boundary layer separa-
tion, trapping of dense fluid in valleys, and the
generation of turbulence.

Despite these limiting assumptions, the model has
been used, for example, as an initial condition for
numerical simulations examining upper-level inter-
nal wave breaking in the atmosphere above isolated
topography and the consequent generation of
downslope winds (Laprise and Peltier, 1989; Sci-
nocca and Peltier, 1989). Although these simula-
tions assumed inviscid flow, and hence neglected
boundary layer separation, this assumption is not
necessarily valid for topography having steep slopes
or topography consisting of two or more hills
whereby dense fluid can be trapped in the valleys.
Even in the case where the flow is relatively fast, and
Fr�1v small, we have seen that boundary layer
separation results in the shedding of coherent
turbulent structures in the lee of steep hills, which
alters wave generation.

The purpose of this section is to compare the
predictions of Long’s model against our laboratory
experiments and thereby to further examine the role
of boundary layer separation in these moderately
large Reynolds number flows.

Explicitly, Long’s model for steady, two-dimen-
sional flow of uniformly stratified fluid, character-
ized by constant buoyancy frequency N0, moving
with uniform upstream speed, U0, over topography
is given by the Helmholtz equation

cxx þ czz þ
N0

U0

� �2

c ¼ 0, (14)

in which c is the perturbation streamfunction and
the subscripts denote partial derivatives. Although
(14) is a linear partial differential equation, it
nonetheless describes finite-amplitude effects, which
enter through the specification of nonlinear bound-
ary conditions. In particular, assuming an inviscid,
free-slip lower boundary, we require that the surface
is itself a streamline, which arbitrarily we set to zero.
Thus we require

�U0hðxÞ þ cðx; hðxÞÞ ¼ 0, (15)

in which we have evaluated the background
streamfunction, CðzÞ � �U0z, and the perturbation
streamfunction, cðx; zÞ, at the height of the topo-
graphy, z ¼ hðxÞ.

For the generation of small-amplitude, hydro-
static internal waves, Eqs. (14) and (15) may be
solved by standard Fourier methods:

cðx; zÞ ¼
Z 1
�1

ZðkÞei½kxþmðkÞz� dk, (16)

in which m2 ¼ �k2
þN2

0=U2
0 (with the appropriate

branch cut taken when computing m so that waves
are outward propagating), and ZðkÞ is found from
the linearized boundary condition

U0hðxÞ ’ cðx; 0Þ ¼
Z 1
�1

ZðkÞeikx dk. (17)

For large amplitude disturbances, assuming the
streamfunction c retains the form in (16), the exact
boundary condition is

U0hðxÞ ¼

Z 1
�1

ZðkÞei½kxþmðkÞhðxÞ� dk. (18)
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This is a Fredholm integral equation of the first
kind that determines the Fourier coefficients ZðkÞ
from the topographic profile hðxÞ. Generically, first-
kind integral equations are ill-conditioned and,
consequently, numerical discretization leads to large
linear systems whose matrices are poorly condi-
tioned. Nonetheless, if the flow is nearly hydrostatic
(Frh51), reasonable numerical solutions can be
obtained (see, for example, Llewellyn Smith and
Young, 2003; Petrelis et al., 2005). In nonhydro-
static cases, the ill-conditioning cannot be overcome
and a different numerical approach is necessary.
Recently, Muraki (2005) has recast Long’s model
into an integral equation of the second-kind.
Numerical discretization of second-kind problems
yield matrices which are typically diagonally domi-
nant and thus are better conditioned.

The solutions of Long’s model under the condi-
tions of the two small-amplitude hill experiments
shown in Figs. 6(A and B) are presented in Fig. 16.
Fig. 16(A) is computed using the solution method
for integral equations of the first-kind, which gives
good convergence for this small value of Frh. The
method for second-kind integral equations is used
to compute the solutions shown in Fig. 16(B), in
which the waves are significantly nonhydrostatic.
Both are the steady-state solutions for flow over 4
sinusoidal hills and, for ease of comparison, the
results are presented as vertical time series rather
than spatial snapshots.

Qualitatively, Long’s model captures the features
we observe in these two experiments. In the case
with Frho1 (Fig. 16(A)), vertically propagating
waves are generated with upstream phase tilt and
Fig. 16. Long’s model solution for (A) subcritical and (B) supercritical

(C), respectively. The colour contours show values of N2
t ½s
�3�, thou

streamlines.
waves in the lee have slightly larger amplitude
than those over topography. In the case with Frh41
(Fig. 16(B)), waves immediately above the topogra-
phy are evanescent but a transient burst of vertically
propagating waves appears in the lee of the last hill.

Although good qualitative agreement is found,
Long’s model predicts that the wave amplitude is
significantly larger than observed in experiments.
Note, for example, that the range of the colour
contours is 10 times larger in Fig. 16(A) than in the
corresponding plot in Fig. 6(A). Furthermore, the
streamlines in Fig. 16(A) are overturning, although
overturning is not observed in the experiment.
Likewise, though not shown here, Long’s solution
computed for the large-amplitude experiments
shown in Figs. 6(B and D) predicts the generation
of waves of much larger amplitude than are actually
observed. Also, waves are predicted to be over-
turning, though this is not what we find in
experiments with the large-amplitude hills.

A simple linear theory calculation predicts that
overturning above infinitely periodic sinusoidal hills
with half peak-to-peak hill height, H=2, should
occur if

H

2
4

l
2p

Frhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fr2h

q . (19)

For the experiment shown in Fig. 6(A), this over-
turning condition becomes H=2\0:11l. The small-
amplitude hills in fact satisfy H=2 ¼ 0:047l, well
below the overturning amplitude. There are two
reasons why Long’s model nonetheless predicts
overturning. First, the hills have finite horizontal
forcing corresponding to the experiments shown in Figs. 6(A) and

gh the ranges differ from those in Fig. 6. The black lines are
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extent and the flow at the bottom boundary
approaching from infinity is at the same vertical
level as the bottom of the valleys, not the mid-depth
between hill crests and valleys. Thus the flow is
displaced by the peak-to-peak distance, not half that
value. Second, nonlinear dispersive effects, such as
self acceleration, act to increase the amplitude of the
waves further so that they become overturning.

We might then expect to see overturning in the
laboratory experiments and yet, we do not. The
primary reason is that Long’s model does not
permit boundary-layer separation: the wave ampli-
tude in the model is set directly by the hill height.
Thus, the amplitude of waves generated in experi-
ments is smaller because the flow over topography
does not penetrate down to the bottom of the
valleys between the hills but rather, fluid remains
stagnant close to the valley floors. Likewise, Long’s
model does not predict the generation of boundary-
trapped lee waves and turbulence. Therefore, it does
not account for the modification of propagating
waves in the lee by these phenomena. Another
reason we do not see overturning in the laboratory
experiments may be due to columnar motions,
which have been observed to oppose the steepening
of the lee waves and to increase the value of Fr�1v

above which overturning occurs from that predicted
by Long’s model (Baines and Hoinka, 1985).

6. Discussion and conclusions

We have investigated internal wave generation
over sinusoidal topography and compared our
results with linear theory and the finite-amplitude
predictions of Long’s model. For slow towing
speeds (Frho1), measured wave frequencies agree
well with the excitation frequencies predicted by
linear theory provided Frht0:7. However, linear
theory significantly overestimates wave amplitudes,
even for the small-amplitude hills with H=l � 0:1.
This is also true for Long’s model and can be
explained by boundary-layer separation, which acts
to reduce the effective hill height. The generation of
large-amplitude waves in the lee of the large-
amplitude hills is also observed and couples with
boundary-trapped lee waves. In particular, o � olee

in a range from 0.55 to 0.75N. This is the same
range observed by Sutherland (2002) for experi-
ments using a large-amplitude step with Fr�1v 41.

At supercritical towing speeds, propagating inter-
nal waves are observed in the lee of the topography.
These waves, generated in part through excitation
by envelope topography, also weakly couple with
coherent turbulent structures in the lee, called
boundary-trapped lee waves. Both the propagating
and boundary-trapped lee waves are excited within
a narrow range of frequencies, with ooolee in
general.

Future work will examine flow over large-
amplitude rough topography, in particular over a
series of rectangular and triangular hills. It is
expected that turbulence between and in the lee of
the hills will be the dominant mechanism of wave
generation. The results will be compared and
contrasted with those of the present study, ulti-
mately working towards increasing our understand-
ing of internal wave generation over finite-
amplitude periodic topography, including the effects
of turbulence.
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