Vortex Dynamics on the Tropopause

- ▷ vorticity dynamics for rotating, stratified flow
- ▷ symmetry-breaking in the atmosphere

▷ Dave Muraki

Simon Fraser University

▷ Greg Hakim

University of Washington

▷ Chris Snyder

NCAR Boulder

Organization of Vorticity in the Midlatitude Atmosphere -

Asymmetric Dynamics of Midlatitude Vortices

- ▷ localized, intense cyclones (low pressure) versus broad, weak anticyclones (high pressure)
- \triangleright contours of geopotential are streamlines \rightarrow midlatitude jetstream

Symmetry-Breaking & Atmospheric Structure _

What is the mechanism behind the observed asymmetry of cyclones & anticyclones?

▷ understanding our 3D atmosphere in terms of a 2D dynamics?

Tropopause-Based Dynamics

- \triangleright troposphere: lowest, weather-containing layer of the atmosphere ($\approx 0 10$ km)
- \triangleright tropopause: troposphere/stratosphere interface \rightarrow organizing level for dynamics?

Vorticity Dynamics _____

2D Euler: Vorticity & Streamfunction

 \triangleright 2D flow gives advection of vorticity, $\zeta(x,y;t)$:

$$\frac{D\zeta}{Dt} = \zeta_t + u\zeta_x + v\zeta_y = 0 \quad ; \quad \nabla^2 \Phi = \zeta$$

▷ velocity streamfunction from 2D vorticity inversion:

$$u = -\Phi_y$$
 ; $v = \Phi_x$

3D Quasigeostrophy: Potential Vorticity (PV) & QG Streamfunction

 $\triangleright\quad$ QG approximation gives horizontal advection of PV, q(x,y,z;t):

$$\frac{Dq}{Dt} = q_t + uq_x + vq_y = 0 \quad ; \quad \nabla^2 \Phi = q$$

 \triangleright QG streamfunction from 3D PV inversion:

$$u = -\Phi_y$$
 ; $v = \Phi_x$

 \rightarrow horizontally non-divergent flow

- \triangleright thermodynamic variable: potential temperature, $heta=\Phi_z$
- ▷ QG approximation: zero Rossby number limit of rotating, stratified flow

 $\mathcal{R} = U/fL$ where f is the Coriolis frequency

Zero PV Surface Dynamics

Well-Mixed Troposphere Assumption $\Rightarrow q \equiv 0$

▷ QG streamfunction determined by surface/tropopause BCs

Surface Quasigeostrophy (sQG)

- hdow semi-infinite fluid ($z \ge 0$), periodic in x,y, decay as $z \to +\infty$
- \triangleright 3D inversion of zero PV:

$$\nabla^2 \Phi = 0$$
 ; $\Phi_z(z=0) = \theta^s$; $\Phi(z \to +\infty) = 0$

 \triangleright 2D advection of surface potential temperature, θ^s :

$$\frac{D\theta^{s}}{Dt} = \theta_{t}^{s} + u \,\theta_{x}^{s} + v \,\theta_{y}^{s} = 0 \quad ; \quad u = -\Phi_{y}(z = 0) \quad ; \quad v = \Phi_{x}(z = 0)$$

▷ sQG *interface* as model for tropopause: Rivest, et.al. (1992); Juckes (1994)

A Question of Asymmetry _____

Geostrophic Turbulence: unforced, decaying vortex dynamics

 \triangleright surface QG \Rightarrow symmetric

Pierrehumbert, et.al. (1994); Held, Pierrehumbert, Garner & Swanson (1995)

- ▷ 2D shallow water ⇒ weak anticyclonic bias at small Rossby number Polvani, McWilliams, Spall & Ford (1994)
- ▷ 3D periodic balance equations \Rightarrow weak anticyclonic bias at small Rossby number Yavneh, Shchepetkin, McWilliams & Graves (1997)
- ▷ idealized rotating, stratified model which includes cyclone intensification?

Primitive Equations (PE) for Rotating, Stratified Flow

Rotating (*f*-plane), Stratified (stable), Boussinesq Buoyancy, Hydrostatic

$$u_{x} + v_{y} + \mathcal{R} w_{z} = 0$$

$$\mathcal{R} \left\{ \frac{Du}{Dt} \right\} - v = -\phi_{x}$$

$$\mathcal{R} \left\{ \frac{Dv}{Dt} \right\} + u = -\phi_{y}$$

$$\delta^{2} \left\{ \frac{Dw}{Dt} \right\} - \theta = -\phi_{z}$$

$$\left\{ \frac{D\theta}{Dt} \right\} + w = 0$$

- \triangleright potential temperature: θ (cold = heavy ; warm = light)
- \triangleright geopotential: ϕ (pressure)

$$\triangleright \quad \text{advection:} \ \frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + \mathcal{R} \ w \frac{\partial}{\partial z}$$

 \triangleright 3D quasigeostrophy is zero Rossby number ($\mathcal{R} \rightarrow 0$) limit of the PE

Next-Order Inversion

 \triangleright small- \mathcal{R} degenerate perturbation theory, resolve using Helmholtz representation

 $egin{array}{rcl} v &=& \Phi_x &-& G_z \ -u &=& \Phi_y &+& F_z \ heta &=& \Phi_z &+& G_x-F_y \ \mathcal{R} \; w &=& & F_x+G_y \end{array}$

 $\triangleright \quad \text{sequence of elliptic solves for: } \Phi \sim \Phi^0 + \mathcal{R} \Phi^1 \ \ ; \ \ F \sim \mathcal{R} F^1 \ \ ; \ \ G \sim \mathcal{R} G^1$

Asymmetric Organization of Vortices

▷ freely-decaying turbulence from random, symmetric initial conditions; Hakim, Snyder, djm (2002)

Mechanics of Vortex Asymmetry _

Vortex Statistics

scatterplot of strength versus size of cyclones & anticyclones

Asymmetry from Horizontally Divergent Flow

- ▷ frontogenesis: steeper-edged cyclones, discourages merger & filamentation
- ▷ frontolysis: broadly-spread anticyclones, encourages merger & filamentation
- \triangleright surface cooling of mean θ : relative strengthening of cyclones
- ▷ filament roll-up instability: anticyclonic bias

Conclusions & Future Directions _

Finite-Rossby Number Mechanisms for Asymmetry

- \triangleright $O(\mathcal{R})$ horizontally divergent flow & implied vertical motion
 - \rightarrow divergent flow events recently observed in tropopause data; Hakim
- ▷ vortex stretching relative to a surface
 - \rightarrow not present in 3D-periodic dynamics
- \triangleright net surface cooling
 - \rightarrow shallow water dynamics preserve center of mass

Applications of Zero PV Surface Dynamics

- ▷ advection dynamics & elliptic inversions are computationally 2D
 - \rightarrow finite-depth effects: recovers 2D vorticity dynamics at largest scales
 - \rightarrow dynamic tropopause interface: comparison with tropopause observations
 - \rightarrow free-surface boundary condition: does it more strongly recover shallow water dynamics?
 - \rightarrow 2-surface dynamics: includes asymmetric baroclinic instability
 - \rightarrow random forcing of sQG: emergence of vortices in the absence of jets

QG+ Reformulation _____

Exact Reformulation of PE

 \triangleright three-potential representation: Φ , F,G

$$egin{array}{rcl} v &=& \Phi_x &-& G_z \ -u &=& \Phi_y &+& F_z \ heta &=& \Phi_z &+& G_x-F_y \ {\cal R} \; w &=& & F_x+G_y \end{array}$$

▷ potential inversions

$$\nabla^{2} \Phi = q - \mathcal{R} \left\{ \nabla \cdot \left[\theta \left(\nabla \times \vec{\mathbf{u}}_{H} \right) \right] \right\}$$
$$\nabla^{2} F = \mathcal{R} \left\{ - \left(\frac{D\theta}{Dt} \right)_{x} + \left(\frac{Dv}{Dt} \right)_{z} \right\}$$
$$\nabla^{2} G = \mathcal{R} \left\{ - \left(\frac{D\theta}{Dt} \right)_{y} - \left(\frac{Du}{Dt} \right)_{z} \right\}$$

▷ surface boundary conditions

$$\mathcal{R} w^s = (F_x + G_y)^s$$
; $\theta^s = (\Phi_z + G_x - F_y)^s$

▷ advection dynamics (interior & surface)

$$\frac{Dq}{Dt} = 0 \qquad ; \qquad \frac{D\theta^s}{Dt} + w^s = 0$$

Turbulent Dynamics in Geophysical Flows

Dynamics in a World Driven by Turbulent Diffusion

▷ Esteban Tabak, New York University

Generation of Large-Scale Jets, Vortices & Layers

from Near-Resonant Interactions of Fast & Slow Waves

▷ Leslie Smith, University of Wisconsin

The Coherence of Turbulence

▷ Fabian Waleffe, University of Wisconsin

Vortex Dynamics on the Tropopause

▷ Dave Muraki, Simon Fraser University

