Floquet Instability & Triad Resonance in a Stratified Flow

- ▷ linear instabilities of a single-mode gravity wave
- ▷ analysis from Floquet & resonant wave perspectives

▷ Dave Muraki & Youngsuk Lee, Simon Fraser University

Equations for a Stratified Fluid _____

Vorticity/Buoyancy Dynamics

 \triangleright 2D Euler fluid with Boussinesq buoyancy & constant stratification (stable) \rightarrow oscillations

$$\frac{D\eta}{Dt} = b_x \qquad \qquad \frac{Db}{Dt} = -w$$

Streamfunction Formulation

- $\forall \psi(x,z)$, incompressible streamfunction: $u = \psi_z$; $w = -\psi_x$; $\eta = -\nabla^2 \psi$
- \triangleright ~ uniform wind & hydrostatic scaling: $~\eta~\rightarrow~-\psi_{zz}$

$$\psi_{zzt} + \psi_{zzx} + b_x + J(\psi_{zz}, \psi) = 0$$

$$b_t + b_x - \psi_x + J(b, \psi) = 0$$

▷ nonlinearity via 2D streamfunction advection: Jacobian determinant

$$J(f,\psi) = \begin{vmatrix} f_x & \psi_x \\ f_z & \psi_z \end{vmatrix} = \begin{vmatrix} f_x & -w \\ f_z & u \end{vmatrix} = uf_x + wf_z$$

$$\psi_{zzt} + \psi_{zzx} + b_x + J(\psi_{zz}, \psi) = 0$$

$$b_t + b_x - \psi_x + J(b, \psi) = 0$$

Fourier Modes: $e^{i(kx+mz-\omega t)}$

▷ linear dispersion relation (slow/fast) for buoyancy-gravity waves

$$\omega(k,m) = k \mp \frac{k}{|m|} \qquad ; \qquad \quad \vec{c}_g(k,m) = \left(1 \mp \frac{1}{|m|} \ , \ \pm \frac{km}{|m|^3}\right)$$

 \triangleright steady wave: k=m=1, $\omega=0$ (slow wave with upward group velocity)

$$\left(\begin{array}{c}\psi\\b\end{array}\right) = \left(\begin{array}{c}1\\1\end{array}\right) 2\epsilon \sin(x+z)$$

 \triangleright Jacobians are zero \Rightarrow <u>exact nonlinear solution</u>!

Goal: to characterize the linear stability of this simple nonlinear wave

- ▷ to understand context for mountain flow instability (Youngsuk Lee, 2nd talk)
- ▷ instability: Mied 1976, Drazin 1977, Klostermeyer 1982, Sonmor & Klaassen 1997

$$\begin{split} \tilde{\psi}_{zzt} &+ \tilde{\psi}_{zzx} &+ \tilde{b}_x &+ \epsilon J \left(\tilde{\psi}_{zz} + \tilde{\psi} , \ 2\sin(x+z) \right) &= 0 \\ \tilde{b}_t &+ \tilde{b}_x &- \tilde{\psi}_x &+ \epsilon J \left(\tilde{b} - \tilde{\psi} , \ 2\sin(x+z) \right) &= 0 \end{split}$$

A Problem for Floquet Theory

- ▷ linear PDE with periodic, non-constant coefficients
- ▷ instability via parametric resonance (as for the Mathieu ODE)

Floquet Approach ____

$$\tilde{\psi}_{zzt} + \tilde{\psi}_{zzx} + \tilde{b}_x - i\epsilon J \left(\tilde{\psi}_{zz} + \tilde{\psi} , e^{i(x+z)} - e^{-i(x+z)} \right) = 0$$

$$\tilde{b}_t + \tilde{b}_x - \tilde{\psi}_x - i\epsilon J \left(\tilde{b} - \tilde{\psi} , e^{i(x+z)} - e^{-i(x+z)} \right) = 0$$

Floquet, Fourier & Hill

▷ product of Floquet exponential & co-periodic Fourier series

$$\left(\begin{array}{c}\tilde{\psi}\\\tilde{b}\end{array}\right) = e^{i(kx+mz-\Omega t)} \left\{ \sum_{-\infty}^{+\infty} \vec{v}_n \ e^{in(x+z)} \right\}$$

 $\label{eq:constraint} \begin{array}{l} \triangleright \quad \mbox{perturbation wavevector, } \vec{K} = (k,m) \mbox{ & Floquet eigenvalue, } \mbox{Im}(\Omega) > 0 \Rightarrow \mbox{instability} \\ \hline \quad \mbox{Hill's infinite matrix} \end{array}$

$$\begin{bmatrix} \ddots & \ddots & & & \\ \ddots & \mathbf{S}_0 & \boldsymbol{\epsilon} \mathbf{M}_1 & & \\ & \boldsymbol{\epsilon} \mathbf{M}_0 & \mathbf{S}_1 & \ddots & \\ & & \ddots & \ddots & \end{bmatrix} - \Omega \begin{bmatrix} \ddots & & & & \\ & \mathbf{\Lambda}_0 & & \\ & & \mathbf{\Lambda}_1 & & \\ & & & \ddots & \end{bmatrix}$$

 $\triangleright \quad 2 imes 2$ <u>real</u> blocks: $\mathbf{S}_n(k,m)$, symmetric; $\mathbf{\Lambda}_n(m)$, diagonal; $\mathbf{M}_n(k,m)$

 $\triangleright \quad {\rm truncate \ to \ } -N \leq n \leq N+1 \ \& \ {\rm compute \ eigenvalues:} \ \ \{\Omega(k,m)\}$

Unstable Floquet Spectrum _

Maximum Growth Rate vs \vec{K} , $\epsilon = 0.1$

▷ natural periodicity due to non-uniqueness of series indexing

$$\left(\begin{array}{c}\tilde{\psi}\\\tilde{b}\end{array}\right) = e^{i\left((k+q)x + (m+q)z - \Omega t\right)} \left\{ \sum_{-\infty}^{+\infty} \vec{v}_{n+q} e^{in(x+z)} \right\}$$

Maximum Growth Rate vs \vec{K} , $\epsilon=0.1$

 \triangleright center-of-mass criterion; preserves notion of <u>central wavevector</u> in (k, m)-space

$$0 \leq \frac{\sum_{n} n |\tilde{\psi}_{n}|^{2}}{\sum_{n} |\tilde{\psi}_{n}|^{2}} < 1$$

 \triangleright where do the complex eigenvalues come from?

Eigenvalue Degeneracy

$$\begin{bmatrix} \ddots & \ddots & & \\ \ddots & \mathbf{S}_0 & \boldsymbol{\epsilon} \mathbf{M}_1 & \\ & \boldsymbol{\epsilon} \mathbf{M}_0 & \mathbf{S}_1 & \ddots \\ & & \ddots & \ddots \end{bmatrix} - \Omega \begin{bmatrix} \ddots & & & \\ & \mathbf{\Lambda}_0 & & \\ & & \mathbf{\Lambda}_1 & \\ & & & \ddots \end{bmatrix}$$

Instability of Small Amplitude Waves ($\epsilon \ll 1$)

$$\triangleright \quad \epsilon = 0$$
, linear dispersion relation \Rightarrow real eigenvalues, $\Omega = \omega(k,m)$

$$\triangleright \quad \epsilon \neq 0$$
, characteristic polynomial is real

 $\triangleright \quad \text{for } 0 < \pmb{\epsilon} \ll 1 \text{, } \underline{\text{complex conjugate } \Omega' \text{s appear from multiple eigenvalues at } \pmb{\epsilon} = 0$

Double Root in a 2-Mode Truncation

$$\begin{array}{ll} \triangleright & \text{adjacent } (n = 0, 1) \text{ Fourier modes } \Rightarrow & k_0 + 1 = k_1 \quad ; \quad m_0 + 1 = m_1 \\ & \left(\begin{array}{c} \tilde{\psi} \\ \tilde{b} \end{array} \right) \; = \; \vec{v}_0 \; e^{i(k_0 x + m_0 z - \Omega t)} \; + \; \vec{v}_1 \; e^{i(k_1 x + m_1 z - \Omega t)} \end{array}$$

 \triangleright at $\epsilon = 0$, if double root $\implies \omega_0 + 0 = \omega_1 \rightarrow \underline{\text{triad resonance}}$

Triad Resonances _

$$\vec{k}_0 + \vec{k}_s = \vec{k}_1$$
; $\omega(\vec{k}_0) + \omega(\vec{k}_s) = \omega(\vec{k}_1)$

Resonant Trace

 \triangleright resonances identified as $\vec{k}_s\text{-connections}$ between ω_0 & ω_1 dispersion curves

 \triangleright curves of all \vec{k}_0 generating a triad (double root) \rightarrow resonant trace

Triad Instability _

Weakly Nonlinear Analysis ($\epsilon \ll 1$)

- \triangleright double root only a necessary condition for small ϵ appearance of complex eigenvalues
- \triangleright bifurcation analysis via eigenvalue perturbation: $\Omega(\vec{k}_0; \epsilon) = \omega_0 + \epsilon \Omega_1$

Mountain Wave Instability

▷ only slow-slow resonance has counter-propagating group velocity

$$\vec{k}_0 + 2 \,\vec{k}_s = \vec{k}_2$$
; $\omega(\vec{k}_0) + 2 \,\omega(\vec{k}_s) = \omega(\vec{k}_2)$

Next-to-Adjacent (n = 0, 2) Fourier Modes

- \triangleright analogous to the 2nd Mathieu instability: $\Omega(ec{k}_0;\epsilon) = \omega_0 + \epsilon^2 \Omega_2$
- \triangleright n = 1 mode plays a crucial role as a "<u>catalyst</u>" (since nearest-neighbor coupling only)

$$\vec{k}_0 + 2 \,\vec{k}_s = \vec{k}_2$$
; $\omega(\vec{k}_0) + 2 \,\omega(\vec{k}_s) = \omega(\vec{k}_2)$

Next-to-Adjacent (n = 0, 2) Fourier Modes

- \triangleright analogous to the 2nd Mathieu instability: $\Omega(ec{k}_0;\epsilon) = \omega_0 + \epsilon^2 \,\Omega_2$
- \triangleright n = 1 mode plays a crucial role as a "catalyst" (since nearest-neighbor coupling only)

Floquet Theory & Resonant Waves _

$$\vec{k}_0 + j \, \vec{k}_s = \vec{k}_j \qquad ; \qquad \omega(\vec{k}_0) + j \, \omega(\vec{k}_s) = \omega(\vec{k}_j)$$

2D Map of Instabilities

- $\triangleright \quad \ \ \mathsf{Floquet\ theory:}\ \ \mathsf{Fourier\ series} \to \mathsf{linear\ eigenvalue\ problem}$
- \triangleright resonant waves: Fourier resonances \rightarrow eigenvalue degeneracies
 - ▷ are all instabilities born out of degeneracy?

Floquet Theory & Resonant Waves _

$$\vec{k}_0 + j \, \vec{k}_s = \vec{k}_j \quad ; \quad \omega(\vec{k}_0) + j \, \omega(\vec{k}_s) = \omega(\vec{k}_j)$$

2D Map of Instabilities

- \triangleright Floquet theory: Fourier series \rightarrow linear eigenvalue problem
- \triangleright resonant waves: Fourier resonances \rightarrow eigenvalue degeneracies
 - ▷ are all instabilities born out of degeneracy?

In Closing

Linear Stability of a Plane Gravity Wave

- ▷ clear characterization of Floquet instabilities by wave resonances
 - neutral curve, multiple-wave stability & nonhydrostatic flow
- \triangleright application of weak turbulence ideas to linear stability
 - b implications for atmospheric wave turbulence?

In Closing

Linear Stability of a Plane Gravity Wave

- ▷ clear characterization of Floquet instabilities by wave resonances
 - neutral curve, multiple-wave stability & nonhydrostatic flow
- ▷ application of weak turbulence ideas to linear stability
 - ▷ implications for atmospheric wave turbulence?

 $\epsilon = 0.2$