Gravity Waves with Topography . . .

... and Possibly Without?

stratified, hydrostatic & rotating flow balance, waves & applied mathematics

▷ Chris, Rich, Joe, Craig

Waves & the Rossby Number ____

Flow Over Topography

- \triangleright QG theory: cap vortex only
- \triangleright Queney theory: \mathcal{R} -transition from QG to waves
- ▷ pressure drag as indicator of wave strength (2D ridge)

▷ <u>transition-like</u> exponential increase in wave action

Wave Generation _

A General Mechanism

▷ lessons from topography:

w aves are exponentially small when $\mathcal R$ small

w ind relative to vertical motion \rightarrow waves

Wave Generation within <u>Balanced</u> Flows?

▷ vertical motions from QG: omega equation

Q G is zero Rossby number limit

- \triangleright IDEA: wave generation as finite- \mathcal{R} correction to QG flow?
- ▷ experiment: gravity wave wake from a QG dipole

Quasigeostrophy _____

Rotating, Stratified Flow

- ▷ zero Rossby number limit
- ▷ geostrophy

$$egin{array}{rcl} v&=&\phi_x\ -u&=&\phi_y\ heta&=&\phi_z \end{array}$$

- ▷ representation of all variables by potentials
- \triangleright PV dynamics & inversion

$$\frac{Dq}{Dt} = 0$$
 ; $\nabla^2 \phi = q$ (with BCs)

 \triangleright vertical motion from \vec{Q} -vector

$$abla^2 w =
abla \cdot ec Q \qquad (ext{with BCs})$$

 \triangleright waves purged by construction

Beyond Quasigeostrophy _____

Three-Potential Representation

- ▷ finite Rossby number
- \triangleright wind & vertical motion

$$\begin{pmatrix} u \\ v \\ \mathcal{R}w \end{pmatrix} = -\nabla \times \begin{pmatrix} G \\ -F \\ \Phi \end{pmatrix} = \begin{pmatrix} -\Phi_y & -F_z \\ +\Phi_x & & -G_z \\ & +F_x & +G_y \end{pmatrix}$$

▷ potential temperature

$$\theta = \nabla \cdot \begin{pmatrix} G \\ -F \\ \Phi \end{pmatrix} = G_x - F_y + \Phi_z$$

▷ PV dynamics

$$\frac{Dq}{Dt} = 0$$

▷ three inversions

$$\nabla^{2} \Phi = q + \mathcal{R} \left(|\nabla \Phi_{z}|^{2} - (\nabla^{2} \Phi) \Phi_{zz} \right) + \dots$$

$$\nabla^{2} F = + \mathcal{R} \left(- \left(\frac{D\theta}{Dt} \right)_{x} + \left(\frac{Dv}{Dt} \right)_{z} \right)$$

$$\nabla^{2} G = + \mathcal{R} \left(- \left(\frac{D\theta}{Dt} \right)_{y} - \left(\frac{Dy}{Dt} \right)_{z} \right)$$

A Model for Wave Generation _

F, G Correction Potentials

- ▷ finite Rossby number
- ▷ three inversions

$$\nabla^2 F + \mathcal{R} (G_{xx} - F_{xy} + G_{zz})_t = Q^x = 2 \mathcal{R} J(\Phi_z, \Phi_x)$$

$$\nabla^2 G + \mathcal{R} (G_{xy} - F_{yy} - F_{zz})_t = Q^y = 2 \mathcal{R} J(\Phi_z, \Phi_y)$$

▷ surface BCs:

