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A resonant instability of steady mountain waves
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A new mechanism for the instability of steady mountain waves is found through
analysis of the linear stability problem. Steady flow of a hydrostatic stratified fluid is
known to be unstable when the streamlines are at, or very close to, overturning. When
the topography has multiple peaks, it is shown that this criterion can be superseded
by an instability owing to a resonant triad interaction. For flow over two peaks, the
threshold heights for instability are roughly half those which produce overturning
streamlines. The mechanism behind the instability is the parametric amplification of
counter-propagating gravity waves. The resonant nature of the instability is further
illustrated by the existence of discrete peak-to-peak separation distances where the
growth rate is a maximum.

1. Introduction

A mountain, or lee wave is a form of internal gravity wave generated by the flow of
stably stratified air over mountainous terrain (see the general review by Baines 1995).
These waves, often visualized by downstream cloud patterns, are implicated in severe
lee-side downslope windstorms and clear air turbulence. Propagation of these waves
is important to the transport of momentum and energy in the atmosphere (Smith
1979). The breaking of gravity waves is also a common initiator for cascades to
small-scale turbulence (Wurtele, Sharman & Datta 1996, and references therein). As
the instability analysed here provides a dynamical means to produce flow overturning,
it represents yet another efficient pathway for the generation of small scales.

The nonlinear theory of mountain waves begins with the discovery by Long (1953)
that a steady theory for stratified flow over two-dimensional topography can be exactly
expressed as a single equation for streamfunction. Furthermore, in the special case of
linear stratification and uniform upstream wind, the nonlinear steady streamfunction
satisfies a linear Helmholtz equation. The wave solutions of Long’s theory are well-
understood from analytical descriptions (Miles & Huppert 1968) and numerical
solutions (Lilly & Klemp 1979; Laprise & Peltier 1989¢; Muraki 2005). These steady
flows have been observed to be stable in both laboratory experiments (Long 1955;
Baines & Hoinka 1985), and numerical computations (Clark & Peltier 1977; Klemp &
Lilly 1978).

A counterpoint to this theory of stable steady waves over topography is the well-
established fact that periodic plane gravity waves are subject to a nonlinear instability.
Floquet theory (Mied 1976; Drazin 1977; Klostermeyer 1982) has shown that a
sinusoidal gravity wave, even of infinitesimal amplitude, is parametrically unstable
through resonant wave interactions (see also the review by Staquet & Sommeria 2002).
The possibility that this resonance mechanism has implications for topographic flow
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FIGURE 1. Long’s steady solution for twin-peak topography with 2=4 and .o/ =0.5.
Streamlines are shown as thick contours spaced at m/2. The steady velocities (a) u®* and
(b) w® are shown as thin contours spaced at 1/4 of the maximum disturbances, with negative
values dashed. In § 3, this flow is shown to be unstable.

was noted in the original hydrostatic simulations of Klemp & Lilly (1978), where the
theoretical steady solutions were not achieved for flow past periodic topography. The
growth of small-scale instabilities, leading to the eventual destruction of the numerical
solution, was attributed to resonant interactions, and not to numerical instability. This
question of stability was revisited recently for non-periodic topography, where the
breakdown of the steady flow via an oscillatory instability was observed in a two-
dimensional simulation with three (or more) isolated peaks (C. Epifanio & D. Muraki,
work in progress). In theoretical support of this finding, the present study determines
that the hydrostatic steady mountain wave can indeed develop a linear instability,
and that this instability clearly results from a resonant wave interaction.

Long’s theory, as an exact nonlinear theory, is valid for topographic obstacles
of finite height. With increasing topographic heights, a well-known consequence of
the theory is the prediction of overturning streamlines. This implies the loss of
static stability in localized regions of unstable stratification (Smith 1977). Under
such conditions, the development of overturning flow is preceded by wavebreaking
and a cascade to turbulence (Pierrehumbert & Bacmeister 1987; Laprise & Peltier
1989a). The nature of this wavebreaking instability at, or near, overturning conditions
has received considerable attention in the literature (Pierrehumbert & Wyman 1985;
Laprise & Peltier 1989b; Scinocca & Peltier 1993; Afanasyev & Peltier 1998; Eiff &
Bonneton 2000; Mayr & Gohm 2000). Of interest here is the possibility for instability
of steady flow over topography with heights well below the critical value required for
streamline overturning.

Motivated by the observation of instability in simulations involving multiple-peaked
topography, we formulate in §2 the linear stability problem for hydrostatic solutions
of Long’s theory with twin peaks (figure 1). Only steady flows without streamline
overturning are considered. The linear stability problem is numerically formulated
as a matrix eigenvalue problem. The typical matrix dimension is of the order 10°,
so a sparse-matrix algorithm is used to identify unstable eigenvalues. In stability
calculations for topographies with four values of peak separation, each is found to
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TaBLE 1. The dimensional scalings for the non-dimensionalization. The variables and scales
are defined in §2.1.

have several unstable eigenvalues (§3). Spatially, the most unstable modes appear
to have a complicated wave structure, but in fact, are primarily comprised of three
distinct linear-like wavepackets. Two of these wavepackets have counter-propagating
group velocities, and are found to form a resonant triad with the steady flow (§4).
The mechanism for instability is a parametric amplification of these wavepackets
within a localized region above the topography. For clearly separated obstacles, the
onset of oscillatory instabilities is found to occur when the heights are roughly
half that required for critical overturning (§5). Analogous with the behaviour of
a resonant cavity, the computed unstable modes are found to be organized into
a hierarchy of branches, with subsequent branches having spatial structures with
increasing cellularity (§6). Finally in § 7, we interpret this topographic instability as a
localized variation of the resonant instability of the periodic plane wave.

2. Long’s steady flow and its linear stability theory

2.1. The primitive equations for topographic flow
The governing equations are taken to be the incompressible Euler equations under the
Boussinesq and hydrostatic approximations. The background state of the atmosphere
is idealized to a uniform upstream horizontal wind and a linear stratification of
potential temperature in the vertical. Relative to this background, the non-dimensional
primitive equations for disturbances are

u, +w,=0,
Du
E = _d)x»
(2.1)
_9:_¢z’
D6
— =0
Dr +w ,

where u, w are the horizontal and vertical velocities, 0 is the potential temperature,
and ¢ is the pressure, or geopotential height (Salmon 1998). The advective derivative,
including the total horizontal wind u” =14 u is now

D 0 ;0 d

D o Mo TV e
and the total stratified potential temperature is 6" =z + 6. The absence of the vertical
acceleration term Dw/Dr in the third equation of (2.1) is a consequence of the
hydrostatic assumption.

The dimensional scalings which result in (2.1) are summarized in table 1. The
background state is characterized by the upstream wind %, and the linear stratification
(Brunt—Viisdld frequency) .. The simplest characterization of topography involves
only the mountain width scale ., and the height . The factor 6,/g, where 6, is a

(2.2)
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reference potential temperature and g is the gravitational constant, converts buoyancy
acceleration to potential temperature.

The flow domain is the semi-infinite (x, z)-plane, unbounded above (z — ) and
bounded below by the non-dimensional topographic surface

z = o h(x), (2.3)

where of = A" # /% is a dimensionless topographic height based on the natural
vertical scale % /./" of the hydrostatic gravity waves. For the twin-peak topography,
we have chosen the O(1) surface profile to be the sum of two Gaussians separated by
a peak-to-peak distance &

h(x) = exp(—(x + Z/2)*) +exp(—(x — Z/2)%). (2.4)

This minimal characterization of twin-peak topography through a height .o/ and peak
separation & is the basis for the parameter studies found in §§5 and 6.1.

Two-dimensional incompressibility allows for the formulation in terms of a
streamfunction ¥ (x, z, t) with u =1, and w= — ,. The governing equations (2.1)
can then be rewritten in the vorticity /buoyancy formulation (Phillips 1968 ; Laprise &
Peltier 1989a)

t xXzz Ox 22> =0,
Voot + Wz + 0x + T (Ve ) } 25)

9t+9x_wx+'](9’ w)ZO,

where J(f, V)= fiv.— fix=(md,+wa,)f is the Jacobian determinant. In the
hydrostatic limit, the cross-stream vorticity is reduced to u,=1,,. Streamlines of
the flow are identified by contours of the total streamfunction, ¥" =z + .

We impose appropriate boundary conditions for ¢ and 6. It is assumed that there
are no disturbances far upstream, hence

Y(—o0,z,1) =0, 6(—o0,2z,t)=0, (2.6)

and h(—o0) =0. As the topographic surface must always be a streamline of the flow,
setting the total streamfunction " to zero on the topographic surface gives the first
of two lower boundary conditions

Ah(x)+¥(x, Lh(x),t) =0, Zh(x)+0(x, Lh(x),t)=0. (2.7)

For purposes of the stability analysis, the second condition restricts the total potential
temperature 07 on the surface to remain fixed at the upstream quiescent value.

To model an atmosphere that is unbounded above we impose a radiation condition,
which ensures that disturbances are either decaying in the vertical, or are waves
carrying energy upward, away from the topographic obstacle. In the stability
computation, this is implemented through the introduction of a damping layer at
the top of the numerical domain.

2.2. Linear gravity waves

In the linear limit, and neglecting boundaries, the primitive equations (2.5) admit
wave solutions for each Fourier wavevector k = (k, m). These are the internal gravity
waves and have the form

[ ‘é’ } =« { $|1m‘ }exp(i(k-x—a);(k)t)), (2.8)
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where the amplitude « is an arbitrary constant (Phillips 1968). The dispersion relation
for the frequency w(k) is

1
ot = k(17 ). 29)
Im|
so that the horizontal phase velocities satisfy the inequality
“"T(k) <1< ‘”*k(k) (2.10)

relative to the non-dimensional upstream windspeed. Thus, we refer to the linear
gravity wave with w_(k) as the slow wave, and the wave with w (k) as the fast wave.
Only slow waves with vertical wavenumber |m|=1 are stationary in the coordinate
frame. As a further aside, it is a consequence of the Jacobian nonlinearity that the
Fourier mode solution (2.8) actually constitutes a nonlinear solution of (2.5).

These waves are dispersive, and their energy propagates with the group velocity,
¢%, as defined by the gradient of w(k)

dwy Jdwr 1 km
g (k) = + Tl=(1F—, +=— ). 2.11
) <8k’ am) ( Tl TP 1D
Therefore, a slow gravity wave propagates energy upward when km > 0, whereas a
fast gravity wave propagates energy upward when km < 0 (Baines 1995).

2.3. Long’s theory for steady flow
Under steady conditions, the primitive equations (2.5) can be written as

O =¥ ) +J(—z+ ¥, 2+ ¥%) =0, (2.12a)
J(z4+6°,z+9°) =0, (2.12b)

where ¥°(x,z) and 6%(x, z) denote the steady solutions. Equation (2.12b) implies
that the steady isentropes are exactly streamlines and therefore, based on the far-
upstream condition (2.6), we have 6° =°. Equation (2.12a) then implies that the
steady streamfunction ¥°(x, z) satisfies

v+ v=0, (2.13)

and thus recovers the linear case of Long’s theory (Long 1953) specific to hydrostatic
flow. In addition to (2.13), the steady-flow solution must also satisfy the topographic
boundary condition (2.7), and the far-field radiation condition.

For this work, steady flows were computed using the direct steady solve developed
in Muraki (2005). The numerical method is spectrally accurate, and because of its
non-iterative nature, computationally efficient. Figure 1 shows contours of the total
streamfunction z 4+ ¥*, and the velocity fields u® and w* for flow over twin Gaussian
peaks (2.4) with 9 =4 and .o/ =0.5. All disturbance fields are 2n-periodic in z. This
is consistent with the dispersion relation (2.9) since steady solutions can only be
composed of slow waves with vertical wavenumber |m|= 1. Moreover, the horizontal
group velocity of these waves is zero, so all of the energy flux is directed vertically. The
streamlines of figure 1 do not overturn; the critical overturning height is .o/, ~ 0.77
for a peak separation of & = 4. Nonetheless in §3, this flow for height .o/ =0.5 is
shown to be linearly unstable.
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2.4. Formulation of the stability problem
2.4.1. The linear stability equations
The linear stability analysis for Long’s theory introduces disturbances of the form

W(x, 2,0 =5 (x, 2) + Re{e? P(x, )},
O(x,z,t)=6%(x,z)+ Re{e“ 0(x, z)}

The time variable can be separated via exponential factors since for the steady flow,
¥¥(x, z) and 6°(x, z) do not depend on time. Substituting (2.14) into (2.5), and using
(2.13), we obtain the linear stability equations

;°&zz +l7/xzz +éx + J(‘/N/zz + {0’ V/S) = 07
/lé +éx _17/)( +J(§_JI1 WS)ZO,

(2.14)

(2.15)

by keeping only linear terms in ¢ and #. The form of the Jacobian,
J(f, ¥*)=u’ f, +w* f,, is such that the steady velocities u*(x, z) and w*(x, z) appear
as non-constant coefficients in the linear stability equations (2.15). Following (2.6)
and (2.7), no disturbance conditions far upstream and zero boundary conditions at
the topographic surface

¥(—0,2) =0, d(—o0,7) =0, (2.16a)
U(x, Zh(x)) =0, 6(x, Zh(x)) =0, (2.16b)

are imposed, in addition to the far-field radiation condition.

The linear stability equations (2.15) are a two-dimensional eigenvalue problem for
the stability eigenvalue A, with eigenfunctions ¥(x, z) and 8(x, z). An eigenvalue with
a positive real part indicates an unstable mode of the steady flow. The growth rate is
given by Re(1) > 0, and its corresponding frequency by —Im(4).

2.4.2. Reformulation into isentropic coordinates

Our strategy for determining stability involves computing the eigenvalues of a
matrix corresponding to a finite-difference discretization of (2.15). However, naive
finite-differencing is not applicable since the topographic surface does not follow a
coordinate line. We overcome this difficulty by introducing a new coordinate system

E=x, =z+vY’(x,2), (2.17)

where curves of constant ¢ are both isentropes and streamlines of the steady
flow. These coordinates are terrain-following, and the ¢ =0 axis corresponds to
the topographic surface. The surface boundary condition (2.16b) is now simplified

V(€. ¢ =0)=0, 6(¢=0)=0, (2.18)

and standard numerical discretization applies. Figure 2 shows the steady flow of
figure 1 (2 =4, o/ =0.5) re-mapped into isentropic coordinates. Streamlines (thick
lines) are mapped into horizontal lines since the total steady streamfunction is now
the vertical coordinate. The pattern retains 2n-periodicity in the vertical. The steady
velocities u®(&, ¢) and w®(&, ¢) are re-gridded into isentropic coordinates using cubic
spline interpolation. Although the introduction of isentropic coordinates applies for
topographic heights .o/ right up to overturning, in practice, the resolution of the
finite-differencing is limited by steepening gradients in the coefficients u*(&, ¢) and

w(§, 7).
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FIGURE 2. Long’s steady solution of figure 1 (2 =4, .o/ =0.5) remapped into isentropic &, ¢
coordinates (2.17). Streamlines are now thick horizontal contours spaced at n/2. The velocity
fields (a) u® and (b) w® are shown as thin contours spaced at 1/4 of the maximum disturbances,
with negative values dashed. Two triangles indicate the location of the topographic peaks along
the ¢ =0 axis.

As a result of the coordinate change, additional non-constant coefficients are
introduced into the eigenvalue problem (2.15) via the derivative relations

0y =0 — w0y, 9, =(1+u’)o,. (2.19)

The eigenvalue problem (2.15) is then reorganized into the matrix operator problem
Ly Lp v] _,[M 0 v

[LZI ng}[é}_/L{o 1|6 ] (220)

where the matrix entries are the linear operators (I is the identity)
Lo=01+u')" (3 —w'd,),
M =—03,((1+ u*)d,),
Li=—Lo+0(1—(14+u’)M),
Lyy=—Ln=(1+u’)o0,

(2.21)

and u®(&,¢) and w(&,¢) are in isentropic coordinates. The specific form of the
M-operator is such that the matrix operator on the right-hand side of (2.20) is self-
adjoint (see Strang 1986, chap. 3). This property permits application of the Arnoldi
eigenvalue search algorithm to the discretization of (2.20).

2.4.3. The numerical discretization

In isentropic coordinates, standard second-order centred finite-differencing methods
can be used to discretize the stability problem (2.20) (Iserles 1996). On the rectangular
domain

—L<&(<L, 0<¢<H, (222)

a discretization onto an M; X M, uniform grid results in a sparse matrix eigenvalue
problem with dimension 2M: M.
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Parameter L H M; M, D Xp
Value 32 207 384 479 12n 20

TaBLE 2. Numerical parameters for the discretization (2.22) and damping layer (2.23) used for
most of the eigenvalue computations in this paper.
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FIGURE 3. Scatterplot in the complex plane of the numerically computed unstable eigenvalues
for topography of moderate height (o =0.5) for several values of peak separation: ¥ =4
(six circles), 2 =6 (eight squares), 2 =8 (five triangles), and 2 =10 (five diamonds). The
eigenvalue of the most unstable mode for each value of & is indicated by a filled symbol. The
eigenmode corresponding to the most unstable 2 =4 mode (filled circle) is shown in figure 4
Some of the scatter is explained by the analysis leading to figures 11 and 12.

The far-field radiation conditions are imposed through the introduction of damping
layers in the regions near the top and lateral boundaries

X <|x|<L, z,<z<H. (2.23)

Appendices A and B elaborate on the implementation of the damping layers, and
most importantly, the extrapolation of the eigenvalues to their limit for zero-damping.
The numerical parameters used for the eigenvalue computations in this paper are
summarized in table 2 (with the exception of the third curve in figure 12).

3. The spatial structure of unstable modes
3.1. Existence of instabilities

We begin by considering the stability for flow past twin-peak topography (2.4) of
moderate height (o7 =0.5). For the flow shown in figure 1 with a peak separation
of ¥ =4, numerical computation of the eigenvalue problem (2.20) identifies six
complex-conjugate pairs of unstable eigenvalues. The six eigenvalues with positive
imaginary part are indicated by circles in the scatterplot of figure 3. The relatively
slow growth and the oscillatory nature of the instabilities implied by these eigenvalues
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FIGURE 4. Spatial structure of the most unstable eigenmode for the flow of figure 1
(o =0.5,2 =4). The real parts of (a) V4(x,z) and (b) B4(x, z) are shown as thick contours
spaced at 1/4, with negative values dashed. The streamlines of the underlying steady flow are
given by thin contours spaced at n. The spatial domain is larger than that used for figure 1,
whose extent is indicated by the dashed region. Furthermore, the undamped computational
domain (table 2) extends beyond the plot shown here.

are consistent with direct simulations (Epifanio & Muraki, work in progress). For
larger values of peak separation (2 =6, §, 10), the computation also identifies several
unstable eigenvalues. These are included in the scatterplot of figure 3, where all
of the eigenvalues lie somewhat clustered in the complex plane. The most unstable
eigenvalue for each value of & is highlighted by a filled symbol.

The existence of these unstable eigenvalues was verified to be robust to the numerical
parameters of the computation — particular attention was paid to the convergence in
discretization (Mg, M,), and to the zero-damping limit (Appendix B). We conclude
that these eigenvalues indicate instabilities with a physical origin.

In the above cases, the steady streamlines are not close to overturning, which
suggests an instability different from wavebreaking dynamics. To grasp the nature of
these computed instabilities, we focus on the analysis of the most unstable mode for
the steady flow of figure 1.

3.2. Spatial structure of the instability

Of the six unstable modes found for the topographic flow of figure 1 (.o =0.5, 2 =4),
the eigenvalue of the most unstable mode (referenced by a subscript 4) is
A4 = 0.060 + 0.3241. Figure 4 illustrates the spatial structure (in physical coordinates)
of this mode by the real parts of ¥4(x, z) and 04(x, z). The complex-valued eigenmode
is normalized so that the value of ¥4 with the largest magnitude is 1. Both components
of the mode essentially share the same spatial character.

The largest amplitudes of the modes are found just above the surface topography.
In particular, the mode naturally decays in the vertical, even though the underlying
steady waves do not. Note that the damping layer (z > 12n) is well above the top of
the plot region of figure 4. Both the vertical and horizontal scales of the eigenmode
are comparable to those of the steady flow; this stands in contrast to the small-scale
instabilities observed by Klemp & Lilly (1978).
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Directly above the topography, the mode has a cellular structure. The phase of the
imaginary part of the eigenmode (not shown) is such that, with increasing time, there
is a horizontal drift of the cells in the upstream direction. There is also a sharp linear
feature emanating (upward) from the downstream side of the second peak.

The zero contours emphasize the weak near-planar waves in the far-field regions
upstream and downstream of the vertical shaft of the steady waves. The effects of the
lateral damping layers (]x| > 20) are not visible in the plot.

The spatial features described above for the most unstable mode (figure 4) are also
characteristic of the other five unstable modes for this topography (o7 =0.5, 2 =4).
Although the spatial structure has divulged little of the nature of the instability, in
the next section, the mode is revealed to be a superposition of predominantly three
distinct wavepackets.

3.3. Wavepacket decomposition

As the eigenvalue problem (2.20) has non-constant coefficients, the Fourier modes are
not natural modes of the system. Nonetheless, it proves illuminating to re-characterize
the spatial structure of the unstable modes in terms of their Fourier spectrum.

Although the flow domain has an irregular geometry in the physical coordinates,
it is rectangular in the isentropic coordinates. As the linear modes are required to
be zero on the ¢ = 0 axis (2.16b), a well-defined (complex) Fourier transform can be
applied to an odd-extension of the eigenmodes to the domain

~L<§<L, —H<({<H. (3.1)

With this extension, the unstable streamfunction v/(£, ¢) is now a localized function
centred on the origin, and its Fourier transform can be computed.

For the most unstable mode analysed previously (figure 4), the log-magnitude
Fourier spectrum of ¥4(£,¢) is shown in figure 5(a), where k and m denote the
horizontal and vertical wavenumbers. (Note that, in the absence of topography,
the isentropic (£, ¢) and physical (x, z) space linearized equations are identical.
Hence the use of k and m as wavenumbers in isentropic coordinates here is not
inconsistent with their use in §2.2.) The reflection symmetry with respect to m =0
is due to the odd-extension in ¢. The Fourier spectrum for &4(, ¢) is qualitatively
similar, and is not shown here.

The spectrum of ¥4(&,¢) is concentrated along a dispersion curve (2.9) whose
frequency is given by w_(k,m) = —Im(44) (thick dark contour). This observation
suggests that the most unstable mode is composed primarily of a specific superposition
of (slow) linear gravity waves, all of which share the frequency of the unstable mode
itself.

In particular, there are four significant spectral peaks — three of these are boxed
in figure 5(a). Each peak is assigned a specific value for a central wavevector which
lies on the dispersion curve (indicated by a dot). The Fourier inversion of a spectral
peak (in isolation) represents a wavepacket of linear waves all close to the central
wavevector. Inversions of these peaks, involving only the Fourier modes delineated by
their bounding boxes, are denoted by VX (£, ¢), ¥{ (£, ¢), and ¥ (&, ¢), and are shown
as figures 5(b—d). Based on the central wavevector, the group velocity (2.11) of each
wavepacket is determined; its direction is indicated in each figure by the ¢% arrow.

First, consider the wavepacket &f(é, ¢) obtained from the spectral box labelled
U. Based on its central wavevector, k; ~(—0.89, —1.57), the direction of its group
velocity (2.11) is downstream and upward (giving the initial for its assigned label). As
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FIGURE 5. (a) Greyscale contouring of the Fourier spectrum of W4(€, ). The log-magnitude
of spectral amplitude is shown by thin contours spaced at 27/ (j =1, ..., 4) of the maximum.
Darker shading indicates larger values. The thick, solid (dashed) contours are the dispersion
curves of the slow (fast) waves with frequency wr(k, m)= — Im(44). The other three panels

show greyscale contouring of the real parts of the wavepackets: (b) ¥/£(&, ¢), (c) ¥{ (&, ¢) and

(d) Y2 (&, ¢). Wavepackets are isolated by the boxes (R, U, D) of (a). Contours are spaced at
intervals of 0.1 for the range [—0.35, 0.45], with negative values dashed. The directions of the
wavepacket group velocities (¢®) are indicated by the arrows.

the only wavepacket whose group velocity is directed downstream, the U-wavepacket
is responsible for the near-plane waves seen downstream of the topography in figure 4.
Again by group velocity considerations, it is reasonable that the U-wavepacket exists
only downstream of the first peak. Oddly, it does not extend to the ground surface,
and hence, seems not to be generated directly by the topography. Lastly, the image
of the spectral U-peak in the upper left quadrant has a Fourier inverse which resides
entirely below the ¢ =0 ground plane, and is thus an artefact of the odd-extension
introduced in the analysis.

The central wavevector for the D-wavepacket, kj ~(0.43, —0.57), determines a
group velocity which is upstream and downward propagating. It exists upstream of a
sharp cutoff at the rear edge of the topography. Consistent with its downward group
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velocity, the D-wavepacket extends right down to the topographic surface. The phase
signature on the surface is the reverse of the R-wavepacket, and identifies this third
wavepacket as a surface reflected wave. The group velocity for the R-wavepacket,
based on its reflection-symmetric central wavevector kj ~ (0.43, 0.57), is upstream and
upward. Naturally, the R-wavepacket exists only upstream of where the D-wavepacket
is found. The near-plane waves seen in the upstream far field of figure 4 are clearly
from the R-wavepacket.

In terms of integrated |/(£, ¢)|%, the three wavepackets constitute about 90% of
the original eigenmode. The more subtle spatial features as described in §3.2 can
also be explained. The cellular structure above the topography is the interference
pattern of the D-wavepacket with its surface reflection. Furthermore, as both phase
velocities (2.10) of the D- and R-wavepackets are upstream, the time dynamics of
such an interference pattern is upstream horizontal drift. Lastly, the sharp linear
feature emanating from the downstream side of the second peak is associated with
the abrupt ending of wave interference between the U-wavepacket and the D- and
R-wavepackets.

Although not presented, the analogous wavepacket analysis based upon 6G4(&, ¢)
arrives at identical conclusions. The remaining question is then, by what mechanisms
are these wavepackets generated? The R-wavepacket is clearly generated by the
surface reflection of the D-wavepacket. However, the energy in the U- and
D-wavepackets seem to appear from thin air. In the next section, we show that
the U- and D-wavepackets form a resonant triad with the underlying steady flow.
This nonlinear interaction is ultimately shown to be responsible for the instability.

4. Resonant triads and instability
4.1. Identification of a resonant triad

To complete the Fourier understanding of the eigenvalue problem (2.20), we are led
to consider the Fourier spectrum of the non-constant coefficients which are specified
by the steady flow. Since u®(&, ¢) and w’(, ¢) are 2m-periodic in ¢, their Fourier
representations are series indexed over integer values of m. In figure 6(a), the absolute
value of horizontal Fourier transforms of u®(&, ¢) (solid) and w*(&, ¢) (dashed) are
plotted (over k) with baselines shifted vertically according to the value of m. As the
velocities are real-valued, their spectra are point-symmetric about the origin (which
is off-centred in the plot to reveal more of the upper right quadrant). Note that the
transform in physical coordinates would only contain modes with |m|=1 (due to
steadiness); thus, the other m-harmonics evident in figure 6(a) are solely due to the
change of coordinates. The m =1 spectral peaks of the steady solution are roughly
correlated with those of the Fourier transform of the topography A(x)

fl(k) = 1 exp<_kz> cos Tk 4.1)

N 4 2’

and imply an approximate spacing given by the formula Ak=~2n/%. The
discontinuities in the spectra at k=0 are expected features of the steady solution
(Muraki 2005).

A steady wavevector k) can be identified with the largest peak of the steady w®-
spectrum (figure 6a). As demonstrated in figure 6(b), the particular choice of steady
wavevector kj ~(1.32,1.00) corresponds exactly to the vector joining the U- and
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FIGURE 6. (a) Fourier spectra of u®(&, ¢) (solid) and w?* (&, ¢) (dashed) for the steady flow of
figure 2. The magnitude of the amplitudes plotted (over k) have baselines shifted vertically
by their Fourier index m. The wavevector kj defines a central wavevector for the steady flow.
(b) Resonant wavevectors, kj, kj and kj, superimposed on the spectrum of figure 5(a).

D-spectral peaks. This conspiracy of geometry

k' +K =k, (4.2)
is the spatial condition for a triad interaction. As the central wavevectors k; and kj
were both conveniently chosen to lie along the dispersion curve w_(k) = —Im(44), the
frequencies also satisfy the temporal resonant condition

w_(k") 4+ o_(K°) = w_(k"), (4.3)

since the frequency of the steady wavevector is zero. This establishes that the most
unstable mode (figure 4) and the steady flow (2.14) are intrinsically connected by
having spectral peaks which are close to an exact triad resonance (e.g. Craik 1985).

4.2. A mechanism for instability

The mathematical significance of the triad resonance lies in the fact that multiplication
of Fourier modes corresponds to addition of their exponents. The triad relations
(4.2), (4.3) imply that when a U-wavepacket is multiplied, in equations (2.20), by
the steady flow, part of the product is a wave with the Fourier characteristics of a
D-wavepacket. Because the steady flow is real-valued, it also contains the complex
conjugate Fourier mode with wavevector —kj. This in turn implies that when a
D-wavepacket is multiplied by the steady flow, part of the product is a wave with the
Fourier characteristics of a U-wavepacket. Thus, the triad resonance is a signature
indicating that the time dynamics of the U- and D-wavepackets are now coupled via
the presence of the steady flow.

An explicit physical picture of the topographic resonance begins by considering the
implications of a U-wave perturbation introduced into the steady flow above the first
peak. By a group velocity argument, this perturbation U-wavepacket will propagate
downstream and upward. Along the way, it will excite, via its triad interaction with
the steady flow, some D-wave activity. Likewise, this new D-wavepacket disturbance,
propagating upstream and downward will produce additional U-wave activity.
Because the group velocities of the U- and D-wavepackets are counter-propagating,
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this process can be sustained in a fixed region directly over the topography. If this
feedback scenario just happens to be in proper phase, the result can be a constructive
resonance to exponential instability. In plasma physics and optics, this nonlinear
process is known as parametric amplification (Craik 1985).

The R-wavepacket is not included in the above feedback scenario. It represents
a major loss of wave energy away from the feedback process, and probably, is a
significant factor in the relatively weak growth of the instability.

The unstable mode analysed in §3.3 is demonstrative proof that a positive
feedback between the U- and D-wavepackets can be realized. In the next section, we
demonstrate that an interaction via triads, at the level of wavepackets, is sufficient to
predict the instability.

4.3. A triad prediction for instability

We approximate the spatial modes, V¥4(&, ¢) and 64(€, ¢), as a linear combination
involving only the U- and D + R-wavepackets:
&4’* oy &ﬁ +agn (17/5) +1/~fff),
! ! e (44)
0y ~ a1 0 +oaxn (07 +6F),
where 6, 67 and 6} are analogously defined for 6. The amplitudes «,, with p, g =1, 2
are to be determined via an eigenvalue problem. Note that the D- and R-wavepackets
are locked together because the latter is a causal reflection of the former, and their
sum is required to satisfy (roughly) the zero boundary condition at the topographic
surface (2.16b). The steady velocities, u® and w®, are approximated by the sum of
their m = +1 harmonics.

To reduce the equations to the interaction by triads only, spatial derivatives are
further approximated by spectral derivatives based only on the triad wavevectors.
For example, the £-derivatives of V), ¥? +¥* and u® are approximated by ik{ v},
ik y? +ikfyf and ikju®. Projecting the action of each operator of (2.21) into a linear
combination of U- and D + R-wavepackets (keeping only the resonant terms) reduces
the eigenvalue problem (2.20) to a 4 x 4 system whose eigenvectors give the o), in
(4.4).

This drastic approximation, which treats the wavepackets as envelopes of plane
waves with central wavevectors of the triad, predicts instability with an eigenvalue
of 0.065+ 0.319i. This is within 2% of the computed eigenvalue A4 = 0.060 + 0.324i,
and gives a quantitative demonstration for the centrality of the triad resonance as the
mechanism for instability.

4.4. A second illustration of the triad instability

In this section, the wavepacket analysis is repeated for the most unstable eigenmode
for topography with .« =0.5 and £ =8. The results for this case with twice the peak
separation are completely consistent with the & =4 example, and further support our
explanation of the instability mechanism.

The five computed unstable eigenmodes for 2 =8 are indicated by triangles in
figure 3. The eigenvalue for the most unstable mode (denoted by subscript 8) is
Ag ~0.031 +0.3551, and is less unstable than the &2 =4 topography. Figure 7 illustrates
the spatial structure by the real parts of ig(x,z) and 6g(x,z). As compared to
figure 4, the basic features of the spatial structure are the same. Although, as might
be expected, the lateral extent of the mode is wider, and the decay in the vertical
somewhat slower. Otherwise, the most significant difference is the appearance of an
extra column of cells between the peaks.
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FIGURE 7. Spatial structure of the most unstable eigenmode for topography with twice the
peak separation as shown in figure 4 (& =0.5, 2 =8). The real parts of (a) ¥s(x,z) and
(b) Bg(x, z) are shown. Otherwise, plot parameters are the same as in figure 4.

Figure 8 shows the results of the wavepacket decomposition. The Fourier amplitudes
are concentrated similarly along the dispersion curve w_(k)= — Im(/g). The spatial
characteristics of the wavepackets are identical to those of figure 5, and the
central wavevectors are assigned as: kg ~(—1.02, —1.53), kg ~(0.40, —0.53), and
kg ~(0.40, 0.53).

The most interesting difference for this broader twin-peak case occurs in the
identification of the resonant triad. As is clear from figure 9, the resonant central
wavevector kg~ (1.42,1.00) for the steady flow is again the largest, but really the
second significant peak of the w?*-spectrum. The triad prediction following the
approximations of §4.3 gives an unstable eigenvalue of 0.036 4+ 0.3561 which agrees
well with the originally computed eigenvalue Ag =0.031+ 0.355i.

This second example re-affirms that triad resonance is the mechanism behind this
instability of steady topographic flow. It is curious that the most unstable mode
for 2 =28 involves a resonance with the second, steady spectral peak, and has a
spatial structure which contains an extra column of cells. Resolution of these minor
conundrums is addressed by a parameter study over peak separation () in § 6. More
important however, is the question of the topographic height (.«/) required for the
onset of this resonant instability.

5. A finite-height threshold for instability

All of the unstable eigenvalues shown in the scatterplot of figure 3 are based upon
a twin-peak topography with height .o/ =0.5. In this section, we demonstrate the
existence of threshold heights at which the resonant instability first appears. For two
values of peak separation ¥ =4 and 8, unstable eigenvalues beginning from A4 and Ag
are computed by continuation, where .o/ is varied by steps of 0.01. The most unstable
growth rates are shown in figure 10. Estimated heights for the onset of resonant
instabilities are approximately .o/ =0.37 for 2 =4 and .« =0.40 for 2 =8. We thus
find that the height required for the onset of resonant instability is roughly only
half of the height required for critical streamline overturning (approximately 0.77
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FIGURE 8. (a) Greyscale contouring of the Fourier spectrum of ¥ (&, ¢). The other three panels
show greyscale contouring of the real parts of the wavepackets: (b) Vg (&, ¢), (c) ¥§ (&, ¢) and
(d) 17/5’;’(5, ). Otherwise, plot parameters are as in figure 5.

for =4, and 0.79 for & =8). Growth rates for both values of & increase with .<7.
Beyond .o =0.55 however, the computations are limited by spatial resolution with
increasingly steep gradients in the coefficients u*(&, ¢) and w*(§, ¢).

Because of this computational limit in obstacle height, we are unable to access
the height values near the stability threshold for single-peaked topography. This
threshold is known to be in the vicinity of the height for critical streamline overturning
(Laprise & Peltier 1989a ; Pierrehumbert & Bacmeister 1987), or possibly slightly lower
(Prasad, Ramirez & Akylas 1996). Nonetheless, for a single peak at moderate heights
(«Z =0.5), no unstable eigenmodes were detected by our linear stability calculations.

6. Resonant modes over topography
6.1. Multiple branches of instability

As noted in §4.4, the only changes in the properties of the most unstable mode for
2 =28 was the involvement of the second spectral peak for the steady wavevector
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FGURE 9. (a) Fourier spectra of u® (solid) and w* (dashed) for the steady flow with 2 =8
and .7 =0.5. The plot is otherwise similar to figure 6(a). (b) Resonant wavevectors, kg, k3 and
%, superimposed on the spectrum of figure 8(a).
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FIGURE 10. Demonstration of the finite-height threshold for the resonant instability. Curves
show the growth rate of the most unstable eigenmode as a function of height .oZ, for two values
of peak separation ¥ =4 and 8. Markers indicate A4 (filled circle) and Ag (filled triangle).

k; (figure 9a), and the extra column of cells above the topography (figure 7). The
root of these differences is actually that 14 and Ag belong to different branches of
unstable eigenvalues. The existence of distinct branches of instability is established
by examining the dependence of the most unstable mode on the peak separation
parameter .

Curves of eigenvalues as a function of peak separation (with fixed .« =0.5) are
computed by continuation, where & is varied by steps of 0.1. Beginning from & =4
and the eigenvalue /4, a continuous branch of eigenvalues is found for the range
2 < 2 < 9. This curve, which includes the value 14 (filled circle), is shown in figure 11.
However, a completely distinct second branch is obtained when beginning from
2 =28 and Ag (filled triangle), and spans the range 5 < 2 < 17. Of the instabilities
shown in the scatterplot of figure 3, the first branch also includes the most unstable
eigenvalue for ¥ =6 (filled square), and an eigenvalue for & =8 (open triangle). The
second branch incorporates eigenvalues with 2 =6 (open square) and 2 =10 (filled
diamond). The classification of the unstable eigenvalues around these two branches
explains some of the scatter in the data of figure 3.
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FiGURE 11. Two branches of eigenvalues as a function of peak separation (2) for o7 =0.5.
The continuations were started from the eigenvalues A4 (filled circle) and g (filled triangle).
Dots and markers indicate integer values of &, with markers identifying eigenvalues common
with figure 3. On both branches, the frequency decreases with increasing 2.
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FIGURE 12. Growth rate for the first three branches of eigenvalues as a function of peak

separation. The most unstable eigenvalue switches branches as & changes. Markers identify
eigenvalues common with figure 3.

Examination of the spatial structure for modes reveals that all modes of the second
branch have the feature of the extra column of cells, while those of the first branch
do not. Moreover, the second branch instabilities are always distinguished through
the involvement of the second spectral peak as the steady wavevector in its resonant
triad.

6.2. Branches as resonant modes

Growth rates for the two branches of figure 11 are replotted to show their dependence
2 in figure 12. The filled markers clearly show that the most unstable modes for
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9 =4, 6 lie on a different branch from those of & =8§, 10. A switching of most unstable
branch occurs for a peak separation of ¥ ~6.5. A third branch, computed at larger
peak separations (also for .7 =0.5), indicates that a subsequent switching occurs at
2 ~11.2. This plot showing multiple local maxima of growth rate are reminiscent of
the resonance curves which describe the gain characteristics of a resonant cavity.

Generically, a resonant cavity is a space containing counter-propagating waves
which are coupled by a feedback interaction. In §4.2, the counter-propagation (by
group velocity) of the U- and D-wavepackets was seen to be a crucial element in the
physical mechanism of the instability. The cavity geometry directly affects the phase
of the interaction. Maximal constructive feedback occurs for particular cavity sizes
and wavelengths, which are determined by an optimal matching of phases. This is the
phenomenon of resonance (Lighthill 1978).

For the topographic instability, the feedback interaction is provided by parametric
amplification with the steady flow. Accordingly, for increasing peak separation, the
spatial structures that resonate most strongly would be those which most naturally fit
above the topography, and thus involve more wavelengths (horizontal cells). The three
branches are identified by having a mode structure with 1, 1.5 and 2 wavelengths over
the span of the topography. The resonant nature of the instability is clearly evident
in figure 12, where the branches characterized by fewer cells are unstable at smaller
values of 2. However, what exactly determines the values of maximal growth remains
a mystery. These maxima appear to be nearly equally spaced. Whether or not this
indicates a resonance length (approximately 4.5) is also undecided. One intriguing
fact is that the frequency associated with the three maxima are all nearly equal with
w=~0.35.

6.3. Stabilization of mode branches

In the limit of small peak separation, the twin-peak topography merges into a single
obstacle. However with decreasing &, all of the resonant modes for amplitude o/ =0.5
stabilize prior to the appearance of overturning in the steady flow. This suggests that
the overturning instability is unrelated to the resonant instabilities discussed here.
Consistent with the resonant cavity analogy, these stabilizations occur at larger
values of & for the higher eigenvalue branches (figure 12).

In the opposite limit of large peak separation, one might anticipate that the flow
becomes stable through the mutual isolation of each peak. Figure 12 again confirms
that this is the case for the first two branches of instability. However, by the resonant
cavity reasoning, if instabilities exist for larger values of &, they are likely to be
associated with higher branches of eigenvalues (i.e. with more wavelengths spanning
the topography). Computations for very large values of & require wider and higher
domains (to fit the topography and to encompass the wavepacket interaction region)
and more resolution/accuracy (since the growth rates are likely to be small). Results
from less well-resolved calculations than those shown here give an indication of the
stabilization of the third resonance branch, and hint at the existence of a fourth
branch. Nonetheless, these computations (.« =0.5) are insufficient to determine the
asymptotic stability definitively at large peak separations.

7. In closing

The instabilities analysed here are essentially a wavepacket variation of the
parametric instabilities of a plane gravity wave. Resonant triad wave interactions
are the primary mechanism for both. Precedents for instability via triad resonances
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are found in other studies of topographic flows. For a background stratification
consisting of two layers, Nance & Durran (1998) observed resonant triad interactions
behind the breaking of lee waves trapped in the lower layer. Prasad & Akylas (2003)
also reported wave trapping from a triad produced by periodic vertical fluctuations
in the Brunt—Viisild frequency. In both these studies, an extra vertical length scale
gives rise to triad resonance; in our problem, it is an extra horizontal length scale
introduced by the peak separation (2).

Although both instigated by triad resonances, this topographic version is weaker
than the periodic wave instability. The growth rates are slow on the advective time
scale (less than 0.1); and a finite-amplitude steady wave is required for realizing the
instability (§5). Two factors are clearly that the triad interactions are spatially limited
to the steady wave region above the topography, and the loss of energy through the
reflected R-wavepacket (§4.2). Thus, these instabilities may easily go unnoticed in
numerical simulations. They are readily neutralized by numerical diffusion. Mayr &
Gohm (2000) have reported steady flow over similar double-peaked topography.
Epifanio & Muraki (work in progress) only clearly observe the instability for
topography with three (or more) peaks.

Based on a length scale of % =3 km and wind speed of % =4 ms~! (Clark & Peltier
1977), the period of a typical most unstable mode is about 4 h, with an e-folding
growth time of roughly three and a half hours. (The period and e-folding time are
calculated from the most unstable eigenvalue A4 in figure 3. From our computations, all
unstable eigenvalues yield similar hourly periods.) This hourly time scale is consistent
with observed evolutions of non-stationary mountain waves (for example, Reynolds,
Lamberth & Wurtele 1968; Shutts & Broad 1993; Ralph et al. 1997). It is clear that one
source of non-stationarity can result directly from time-varying upstream conditions.
Alternatively, Nance & Durran (1998) demonstrated that temporal oscillations, of
similar time scales, can result from triad resonances due to vertical variations in the
Brunt—Viisild frequency. Our resonant instability represents a closely related source
of non-stationarity, born instead from horizontal variations due to the two-peak
topography. It thus proposes a mechanism for mountain wave variability in the
absence of wave-trapping conditions.

We have detected only large-scale unstable modes, although Klemp & Lilly (1978)
reported small-scale instabilities for their flow over periodic topography (§3.2). We
speculate that the small-scale instabilities are associated with a different type of
resonant triad, one involving the fast branch of gravity wave (2.9). In the spectral
picture (say, figure 6b) this would correspond to a triad connection involving the
dashed part of the dispersion curve. Such instabilities are clearly present in the
(periodic domain) wave turbulence simulations of Lin (2000). We believe this type
of triad does not lead to instability in our study because the group velocity of
such waves are not counter-propagating. However, in a laterally periodic domain,
horizontal wrap-around of wavepackets could easily sustain such a triad interaction.

We have presented the case that the topographic instability is a simple wavepacket
version of a triad resonance. However, as shown in figure 13, the spectrum of (&, ¢)
for a less unstable eigenmode reveals that the underlying triad need not be unique.
This example illustrates that some solutions of the non-constant coefficient stability
equation (2.15) may have a richer spectrum along the dispersion curve. Nonetheless,
this complication does not alter our conclusion that resonant triad interactions are
ultimately responsible for the instabilities we observe.

The instabilities reported here were based on two-dimensional hydrostatic flow —
these assumptions were of great benefit in simplifying the analysis. However, having
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FIGURE 13. Greyscale contouring of the Fourier spectrum of ¥ (£, ¢) for the third most unstable
eigenvalue (A=0.016 4 0.311i) of twin-peak topography with & =8 and .« =0.5. The spectrum
suggests two possible triad connections using k§. Otherwise, plot features are as in figure 6(b).

clearly identified the triad and spatial character of the resonant instability in the
hydrostatic case, provides a diagnostic basis for identifying similar instabilities in non-
hydrostatic flows. In fact, non-hydrostatic flows already possess a natural horizontal
scale % /./", so triad instabilities could possibly exist even for single-peak topography.
Also, because the triad resonance mechanism is robust to dimensionality, it is not
hard to imagine that these instabilities should at least persist in flows over (spanwise)
elongated topographic obstacles. Finally, the nonlinear evolution of these instabilities
to overturning and turbulence remains for future explorations.

The authors thank Craig Epifanio for his invaluable insights from numerical
simulations, and for his insistence on the use of isentropic coordinates. This work
was partially supported by NSERC RGPIN-238929 (Y.L., D.J.M. and D.E.A.), PIMS
(Y.L.), and NSF CMG-0327658 (D.J.M).

Appendix A. Numerical computation of the eigenvalues

One subtle consequence of the change to isentropic coordinates is that the third-
order vertical (z) derivative in (2.15) has no analogous term in the isentropic
reformulation (2.20). This vanishing act occurs because the Jacobian is essentially a
directional derivative in the £-direction. This simplification also represents a significant
numerical advantage, as third derivatives at a boundary are inconvenient for second-
order centred finite-differencing. Thus, in isentropic coordinates, the second-order
discretization of the stability problem (2.20) proceeds uneventfully on a uniform grid
for the domain (2.22).

For the discretization, zero boundary conditions are applied at the ¢ =0 surface
(2.18) and at the top ¢= H. Laterally periodic boundary conditions are used
at £= + L. The top and lateral conditions are artificial, and require a damping
layer to remove spurious reflections and the wrap-around of waves. Details on the
implementation of these damping layers are given in Appendix B.

The discretization of (2.20) is equivalent to replacing the differential operators
by their corresponding finite-difference matrix operators. For an Mg x M, uniform
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gridding, (2.20) becomes a large generalized matrix eigenvalue problem of the form
Av = /Bv, (A1)

where A and B are square sparse matrices with dimension 2M;M,. Computations
on the standard domain (table 1) use an M; x M, =384 x 479 grid, and the size of
the resulting matrix problem is therefore 3217922, Note that the numerical domain
was increased to H =24n with M, =575 (and z, =16m) for computing the third
eigenvalue branch of figure 12, since the wave interaction region extended higher
for these cases with wider topography. Finally, in several cases, the finer resolution
Mg x M, =448 x 559 was used to verify convergence of the computed eigenvalues.

The eigenvalue problem is solved numerically using the Arnoldi iterative method
as implemented in ARPACK. The solver is designed to search for a subset of the
eigenvalues of large sparse matrices nearest to a given target value. This feature fits
our problem nicely, as we are most interested in finding eigenvalues corresponding to
unstable eigenmodes. Our searches scanned over the grid of target values defined by
0.05j +10.05k with j=1,2 and k=0 to 20. One restriction imposed by ARPACK
is the requirement that the matrix B be symmetric and positive definite. This is true
for our B matrix, as its symmetry and positive definiteness is inherited from the
right-hand side operator of (2.20) (Strang 1986, chap. 3).

Appendix B. Damping layers and eigenvalue extrapolation
B.1. Design of damping layers

Following (Durran 1998), wave radiation can be effectively implemented through
the introduction of Rayleigh damping terms into the horizontal momentum and
thermodynamic disturbance equations (2.1)

D~ R ) —uf),
Dt
(B1)
DY W= — R 26 -6
Dr +w= , 2 .

The damping coefficient R(x,z) is a non-negative, smooth function which is only
non-zero near the boundaries of the numerical domain (2.22), and it is only used
to damp disturbances from the steady solution. The damping terms then appear as
modifications to the linear operators Ly; and Ly, in (2.21)

L11 _’Lll +8§(R(éﬂ ;)(1+u5)8§)7 L22_)L22+R(Sv {)7 (BZ)

where R(&, ¢) is in isentropic coordinates.
We define R(x,z) by a top damping coefficient, R"(z), and a lateral damping
coefficient, R*(x):

R(x,z) = R"(z) + R"(x). (B3)
The top damping coefficient R”(z) is given by
0 (z < 2),
R'()=c {1 (1 o <ﬂ<z—z>>)2 (o <2< H) (B4)
2 H—z,

which turns on at z, and gradually increases up to 2¢, at H (Durran 1998). The lateral
damping coefficient R*(x), which has a form similar to (B4), turns on at x = + x,
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FIGURE 14. Unstable eigenvalues as a function of damping-layer strength for the topography
with 2 =4 and o/ =0.5. (a) Like symbols identify real and imaginary parts of each eigenvalue
as the coefficient ¢, is varied (B4). Large markers at ¢,=0 denote the zero damping
limit obtained from linear extrapolation of the values indicated by filled markers. (b) The
extrapolated values shown in the complex plane.

and gradually increases up to 2c, at x = + L. We always set
cx = ¢(L —x,)/(H —2p) (B5)
so that the gradient of the damping is the same for both R“(x) and R*(z).

B.2. Eigenvalues in the limit of zero damping

Recall that damping layers are introduced to the perturbation problem (2.20) to
mimic the ideal situation — a semi-infinite domain over the topographic surface with
an upper radiation boundary condition — by removing reflecting/wrapping waves
at the numerical boundaries. While the damping layer can remove these artefacts,
the resulting eigenvalues can be contaminated, and so what is really wanted are the
eigenvalues in the limit of zero damping.

If the damping strength ¢, is too small, the layer will not remove all reflecting
(wrapping in x) waves. On the other hand, if c, is too large, the damping layer can
reflect waves from its gradient. For a sufficiently deep and wide damping layer, there
will be an intermediate range for ¢, where the damping layer will absorb outgoing
waves without reflecting anything back into the undamped region. We assume that,
in this intermediate range, the eigenvalue varies linearly on c,. (This is certainly true
in the special case of constant damping coefficient R(x, z) = R, where each eigenvalue
is simply shifted by —R.) Linear extrapolation is then used to obtain an estimate of
the eigenvalue in the zero damping limit.

Figure 14(a) shows the six unstable eigenvalues with varying c, (steps of 0.025)
for the topographic example 2 =4 and .« =0.5. Real and imaginary parts of each
eigenvalue are identified by distinct markers. The eigenvalues can change rapidly
for ¢, <0.4 — indicating that the reflected and wrapped waves at the numerical
boundaries are being removed — and then relatively slowly for ¢, > 0.4. Estimates
of the eigenvalue in the zero damping limit were obtained by linear extrapolation
over the values ¢, > 0.5 (filled symbols). The extrapolated values at zero damping
are indicated by the large symbols in figure 14(a) at ¢, =0. These are also shown
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as the large symbols in the complex plane of figure 14(b). All eigenvalues presented
in this paper are extrapolated in this manner. For most parameter values, the most
unstable eigenvalue was observed to be the least sensitive to variations in the damping
parameter c,.
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