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Our fundamental understanding of steady, stratified flow over two-dimensional topogra-
phy rests on the pioneering works of G. Lyra and R. Long. Within linear theory, Lyra
established the far-field radiation conditions that determine the downstream pattern of
buoyancy waves. Soon after, Long discovered that the steady, nonlinear streamfunction
for special cases of stratified, 2D flow could satisfy the same equations as linear theory,
subject to an exact topographic boundary condition. Fourier methods are currently used
to compute solutions to Long’s theory for arbitrary topography in the near-hydrostatic or
small amplitude topographic parameter regimes. It is not generally appreciated however,
that these methods encounter difficulties for flows that are both strongly nonhydro-
static and beyond linear amplitudes. By recasting Long’s theory into a linear integral
equation, this difficulty is shown to be a computational barrier associated with an ill-
conditioning of the Fourier method. The problem is overcome through the development of
a boundary integral computation which relies on some lesser-known solutions from Lyra’s
original analysis. This method is well-conditioned for strongly nonhydrostatic flows, and
is used to extend the exploration of critical overturning flows over Gaussian and bell-
shaped ridges. These results indicate that the critical value of the non-dimensional height
(NH/U) asymptotes to a finite value with increasing nonhydrostatic parameter (U/NL).
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1. Introduction
Linear theories for stratified flow over topography were first established during the

1940’s with the pioneering works of Lyra (1940), Queney (1948) and Scorer (1949). The
first significant theory to address nonlinearity occurred soon thereafter, when Long (1953)
noted that the steady theory for stratified flow over two-dimensional topography could be
exactly expressed as a single equation for the streamfunction.† Furthermore, conditions
of uniform upstream wind and constant density stratification (under a Boussinesq as-
sumption) represented a remarkable special case where the theory reduced to the linear
Helmholtz equation. Subsequent laboratory experiments by Long (1955) himself con-
firmed that this streamfunction theory could accurately predict flows for topography of
finite amplitude — including those approaching the point of overturning streamlines.
Both for its mathematical simplicity and its broad range of validity, Long’s theory repre-

† Brown & Christie (1998) cite the very early appearance of the non-Boussinesq version of
the streamfunction theory in Dubreil-Jacotin (1937). Her original fluid mechanical derivations
are actually contained in Dubreil-Jacotin (1932, 1935). The context for these studies addressed
surface water waves, rather than the topographic flow problem.
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sents an important benchmark in our understanding of the nonlinear flow of a stratified
fluid over topography.

An important, but subtle issue is how nonlinearity resides within Long’s steady stream-
function even though both Lyra’s and Long’s theories satisfy the same Helmholtz equa-
tion at every point in the flow. The entire difference lies within the topographic boundary
condition. Long’s theory for finite height topography, requires the surface to be an exact
streamline, and therefore the streamfunction is constant everywhere along a terrain-
following lower boundary. Linear theory assumes that the topographic height, H, is sig-
nificantly smaller than the vertical wave scale, U/N , based on the upstream wind U and
stratification N . Consistent with this is the approximation of the topographic condition
by an equivalent vertical motion or buoyancy disturbance at a flat lower boundary. As a
result, the topographic surface is only approximately a streamline, up to the assumptions
of small height terrain.

For atmospheric flows which are assumed to be unbounded above, an upper boundary
condition is also required. This issue was not addressed by Long, as his flow experiments
and supporting theory were conducted in channels of finite height (Long 1955). However,
conditions in the far-field had already been addressed analytically by Lyra (1943) through
the imposition of maximal decay of waves upstream.† As this upstream decay principle
must also apply to Long’s theory, nonlinear effects can only be manifested through the
finite-height topographic boundary condition.

The earliest realistic depictions of a Long’s theory flow in an unbounded atmosphere
were the streamlines over a semi-circular obstacle by Kozhevnikov (1968)‡ and Miles
(1968). Both works relied upon the representation of Helmholtz solutions as series in-
volving Bessel functions.¶ Low-order truncations were then computed to obtain steady
(nonhydrostatic) streamline patterns. The precedence for the utility of Bessel series,
however, had already been established through the derivation of a Green’s function ap-
propriate for Long’s theory by Lyra (1943).

An alternative approach to Long’s theory involves the use of integral equations. Miles &
Huppert (1969) derived scattering and drag formulas for the hydrostatic limit in terms of
integral equations involving a Hilbert transform. Streamlines for the hydrostatic flow were
produced in Lilly & Klemp (1979) whose computations were based upon a hydrostatic
integral equation of Drazin & Su (1975). Moreover, their results were directly verified
with the steady-state obtained from a time-dependent primitive equation model. The
hydrostatic integral equation also formed the basis for the more recent work by Kantzios
& Akylas (1993). Predating these, however, were the nonhydrostatic flows obtained by
Raymond (1972), from a Fourier-based integral equation solved by iteration. A variation
of this Fourier iteration was more recently used by Laprise & Peltier (1989) in their
systematic exploration of nonhydrostatic flows, and Durran (1992) for large-amplitude
topography in two-layer hydrostatic flows.

In this article, the integral equation methodology is developed to a fuller degree, which
exploits both the existing Fourier and Bessel paradigms. In particular, with the increased
capacity of computing, accurate solutions to integral equations are obtained by solving

† In classical acoustic and electromagnetic scattering, the theory of the Helmholtz equation
with its (radially-outward) Sommerfeld radiation condition was already well-understood. How-
ever, the far-field corresponding to the upstream/downstream asymmetry of topographic flows
represented a significant departure from the standard literature.
‡ An historical review of early advances using Long’s theory, as well as a critical appraisal of

its practical limitations, are contained in Smith (1979).
¶ The English-language translation of Kozhevnikov (1968) confused the notation for Bessel

functions. The formulas should involve Jn(·) instead of In(·).
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large matrix systems. It is first demonstrated that solutions to Long’s theory can be
directly computed without the need for iterative calculations. Next, it is shown that the
usual Fourier methods are ill-conditioned for flows that are sufficiently nonhydrostatic
and nonlinear. This numerical limitation is overcome by eschewing the Fourier formu-
lation in favor of a boundary integral approach which proves especially effective in the
strongly nonhydrostatic parameter range, including the regime of large amplitude waves.
Finally, this computational tool is applied to extend the critical overturning curve to
strongly nonhydrostatic flows over Gaussian and bell-shaped ridges.

2. Long’s Theory
For an incompressible, inviscid and Boussinesq fluid, the steady disturbance stream-

function ψ(x, z) satisfies the two-dimensional linear Helmholtz equation

ψxx + ψzz +
(
N
U

)2

ψ = 0 (2.1)

in the simple case when both the upstream wind, U , and the Brünt-Vaisala frequency, N ,
are taken to be constants (Laprise & Peltier 1989).† Steady winds are defined in terms
of a disturbance streamfunction

u(x, z) = U + ψz ; w(x, z) = −ψx (2.2)

with quiescent upstream conditions, ψ(−∞, z) = 0. Under this assumption of uniform
upstream wind, the total streamfunction is thus given by Ψ(x, z) = Uz + ψ(x, z). Since
the topographic surface, z = H(x), must also be a streamline of the flow, a zero total
streamfunction condition can be applied at the lower boundary

UH(x) + ψ(x,H(x)) = 0 . (2.3)

Finally, in an atmosphere that is unbounded above, a radiation condition must be satis-
fied which ensures that disturbances either decay, or correspond to waves carrying energy
away from topographic obstacles. Such a boundary condition can be applied either by im-
posing maximal upstream decay as Lyra (1943), or by specifying proper far-field behavior
of the Fourier modes as Queney (1948).‡

The environmental parameters define a lengthscale U/N — which corresponds to the
reciprocal of what is often referred to as the Scorer parameter (Lilly & Klemp 1979).
Simple topographic profiles introduce at least two additional lengthscales: a horizontal
scale L and a height scale H. Within this minimal set of scales, the flow behavior is
parametrized by two dimensionless ratios

A ≡ NH
U

; σ ≡ U
NL

. (2.4)

The first, A, is the height parameter which is of order one when the surface isentrope
displacement is comparable to the vertical wavescale. The second, σ, is the nonhydrostatic
parameter which primarily controls the downstream wavetrain. At the extreme of broad
topography (σ = 0), is the hydrostatic limit. Such flows are characterized by the vertical
wavescale U/N , but without any downstream dispersion of waves. At the other extreme

† The general background conditions under which a linear streamfunction equation ensues
is discussed in (Yih 1960). Derivation of (2.1) specifically for Boussinesq flow is discussed in
(Raymond 1972) and (Wuertle et al. 1996).
‡ Early validations of these radiation conditions are discussed by Grubĭsić & Lewis (2004)

within the historical context of the Sierra Wave project.



4 David J. Muraki

−3 0 3
0

3

6

9

 x−axis (L)

 z
−a

xi
s 

(U
/N

)

−3 0 3
0

3

6

9

 x−axis (L)

 z
−a

xi
s 

(U
/N

)

Figure 1. Steady streamlines (dark) and disturbance velocities (light) contours for the hy-
drostatic limit (σ = 0) at critical overturning (Ac ≈ 0.823). Disturbance u-winds (left) and
vertical motion w (right) are shown with negative values dashed. Contours are spaced at 0.25
of maximum disturbances (|u|max ≈ 1.00U , |w|max ≈ 1.40σU).

of narrow topography (σ > 1) are strongly nonhydrostatic flows. In this case, despite the
disparity between the topographic lengthscale and the horizontal wavescale, significant
waves can still be generated when A = O(1).

Rescaling the horizontal coordinate on L, the vertical coordinate on the wavescale
U/N and the streamfunction on UH expresses the nondimensional Long’s theory (2.1)
with its surface condition (2.3)

σ2ψxx + ψzz + ψ = 0 (2.5)

h(x) + ψ(x,Ah(x)) = 0 (2.6)

in terms of the parameters A and σ. The topographic profile, h(x), is normalized by
maximum deviation (max |h(x)| = 1), and is assumed to have no asymptotic height
change: h(−∞) = h(+∞) = 0. The horizontal wind is scaled on U , and the vertical
motion on σU . It is clear that linear theory is obtained in the A = 0 limit, as the
evaluation of the surface boundary condition is displaced to z = 0. In addition, the
choice of horizontal scale allows for a non-singular approach to the hydrostatic limit with
σ = 0.

One of the characteristics of the steady wave flows is the tendency towards overturning
streamlines with increased height topography (Smith 1977). Figure 1 shows the familiar
case of critical overturning in a hydrostatic flow (σ = 0) past a Gaussian ridge. The
minimum total u-wind is exactly zero and occurs where the streamline/isentope has a
vertical slope. In general, the critical amplitude for the Gaussian ridge,Ac(σ), will depend
on the nonhydrostatic parameter. Determining Ac(σ) requires calculating flow solutions
over a range of A-values and finding the smallest such value for which the minimum u-
velocity is zero (the location of this minimum must also be determined). This procedure
for the hydrostatic example establishes Ac(0) ≈ 0.823 shown in Figure 1.

The repetitive nature of this zero-searching algorithm is assisted greatly by efficient and
accurate numerical solvers. Based on the methods described in this paper, the curve of
critical amplitudes has been calculated over a broad range of nonhydrostatic parameters
(Figure 2). In previous studies, only the critical regime for σ 6 0.5 has been systematically
explored (Laprise & Peltier 1989) using Fourier-based computations. Section 3 reviews
the Fourier approach to Long’s theory, and reveals it to be a purely linear computation.
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Figure 2. Critically overturning heights, Ac(σ), for Gaussian topography as a function of the
nonhydrostatic parameter. Circles indicate values computed using the Fourier-based integral
equation (3.4), while asterisks indicate cases computed using the boundary integral equation
(5.6). The dashed curves show the degradation of the numerical conditioning of the Fouri-
er-based solver, specifically indicating thresholds where 7 (dark) and 9 (light) digits are lost.
The second-kind solver performs reliably for nonhydrostatic problems with σ > 0.30. A best-fit
estimate of the upper asymptotic value of 1.73 is indicated by the dark thin line (7.2).

Section 4 then demonstrates its numerical ill-conditioning, especially for nonhydrostatic
flows. This motivates the development, in Sections 5 and 6, of the boundary integral
approach with which the strongly nonhydrostatic values of the curve of Figure 2 were
obtained.

3. The Fourier Method
The Fourier modes, ei(kx+mz), for the Helmholtz equation (2.5) satisfy the dispersion

relation

m2 = 1− σ2k2 , (3.1)

where the sign choice of the vertical wavenumber m(k) embodies the radiation condition
aloft. As determined by Lyra (1940), the appropriate choice is given by

m(k) =

{
sgn(k)

√
1− σ2k2 for 0 < σ2k2 6 1

i
√
σ2k2 − 1 for 1 6 σ2k2 <∞

, (3.2)

so that short waves decay with height, and propagating waves have upward group velocity.
Waves just below the transition σk = 1 have nearly horizontal group velocity, so that
the downstream far-field wake will be dominated by waves with horizontal wavelength
2πσ (thus N/U is the natural downstream wavescale). The most general solution to the
Helmholtz equation (2.5) that satisfies the radiation boundary condition has the Fourier
representation

ψ(x, z) = −
∫ +∞

−∞
ĉ(k) ei(kx+m(k)z) dk (3.3)
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where ĉ(k) is the complex-valued Fourier coefficient and is determined by the surface
topography. Direct substitution into the surface boundary condition (2.6) gives

h(x)−
∫ +∞

−∞
ĉ(k) ei(kx+m(k)Ah(x)) dk = 0 . (3.4)

This condition is a linear integral equation (Kondo 1991) for the unknown coefficient ĉ(k)
given the surface topography h(x). Specifically, it is classified as an integral equation of
a type known as a Fredholm equation of the first kind. Identifying the kernel function,
K(x, k), as the exponential factor

K(x, k) ≡ ei(kx+m(k)Ah(x)) (3.5)

puts the surface condition (3.4) into the standard form (Wing 1991)∫ +∞

−∞
K(x, k) ĉ(k) dk = h(x) . (3.6)

A key property of the left-side integral operator of (3.6) is that it acts linearly with
respect to the unknown ĉ(k). Therefore, even with the exact boundary condition (2.6), the
solution for Long’s streamfunction is a purely linear problem. This is not to be confused
with the fact that the streamfunction, ψ(x, z), as well as the Fourier coefficient ĉ(k),
depend nonlinearly on the topography h(x) and the height parameter A. Finally, in the
limit of zero height topography (A → 0), the integral in (3.6) is exactly a Fourier integral.
The coefficient ĉ(k) is then simply the Fourier transform of the topography

ĉ(k) ≈ 1
2π

∫ +∞

−∞
e−ikx h(x) dx = ĥ(k) (3.7)

which recovers Lyra’s linearized theory.
Although there is an extensive mathematical literature on the subject of linear integral

equations, most of the attention is directed towards equations of the second-kind variety.
As discussed in Wing (1991), much of this is due to the fact that some key properties of
first-kind equations make them poorly behaved relative to their second-kind cousin. The
most debilitating of these is that first-kind integral operators generically have eigenvalues
arbitrarily close to zero — this has the severe consequence that computational solutions
are guaranteed to become ill-conditioned with increased resolution. Nonetheless, in the
next Section, it is demonstrated that reliable solutions of Long’s theory can be obtained
from the integral equation as formulated in (3.6) over a limited range of parameter space.

4. The Fourier Computations
The most straightforward computational approach for solving (3.6) is to approximate

the integral by numerical quadrature over discrete wavenumbers km, for −N 6 m 6 +N ,
and unknowns ĉm = ĉ(km). A determining set of 2N + 1 equations for the unknown
coefficients ĉm is obtained by evaluating at 2N + 1 different spatial positions xn, for
−N 6 n 6 +N . At each xn, such an approximation of (3.6) can be written as the
summation

N∑
m=−N

wmK(xn, km) ĉm = h(xn) (4.1)

where wm are the weights for the numerical quadrature (such as trapezoidal rule). Over
all n, the result is a set of 2N + 1 linear equations for the 2N + 1 unknowns ĉm whose
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Figure 3. Top panel shows the Fourier coefficient ĉ(k) for the hydrostatic flow (σ = 0) of
Figure 1. The real part (solid) differs only slightly from the Fourier transform of the topography

ĥ(k) (4.3). However, the imaginary part (dashed), which is exactly zero in linear theory, embodies
the dominant effect due to the exact surface boundary condition (2.6). Bottom panel shows the
Fourier coefficient for the nonhydrostatic flow (σ = 0.3) of Figure 4. The only difference from
the hydrostatic case is a very minor change in the decaying tails of the real part.

form is that of a matrix equation

[K]~c = ~h (4.2)

where ~h = (hn) and ~c = (ĉm) are column vectors. The most straightforward implemen-
tation places the discretizations km = m∆k and xn = n∆x onto uniformly-spaced, and
symmetric-about-zero grids. Further details are deferred to Appendix A.

This discretization of the integral equation (3.4) provides a direct (i.e. non-iterative)
method for obtaining solutions to Long’s theory. The example used here is the Gaussian
topography

h(x) = e−x
2

; ĥ(k) =
1

2
√
π
e−k

2/4 (4.3)

where ĥ(k) denotes the Fourier transform. The hydrostatic (σ=0) calculation shown as
Figure 1 is taken from a much wider computational domain of −8π < x < 8π (with
∆x = π/32 and N = 255). The additional width is necessary because the Fourier nature
of the representation (3.3) allows for spurious wraparound of waves. The real and imag-
inary parts of the Fourier coefficient ĉ(k) are shown in the top panel of Figure 3. The
real part (solid) differs only slightly from the Fourier transform of the topography ĥ(k)
(4.3). However, the imaginary part (dashed), which is exactly zero in linear theory (3.7),
embodies the dominant effect due to the exact surface boundary condition (2.6).

Figure 4 shows the solution with the critical overturning of streamlines for the case of
a weakly nonhydrostatic flow (σ = 0.3, Ac ≈ 0.959). With vertical inertia effects now
included, a downstream wavetrain has appeared whose horizontal wavelength is roughly
2πσ. An even wider computational domain −32π < x < 32π (with ∆x = π/32 and
N = 1023) is now required so that upstream wraparound of this wavetrain is not evident
in the plot domain. In both Figures 1 and 4, the zero contours of velocity are shown as
an indication of the suppression of upstream wave artifacts.

To achieve the similar accuracy (flow velocities converged to four significant digits with
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Figure 4. Steady streamlines (dark) and disturbance velocities (light) contours for a nonhy-
drostatic (σ = 0.30) case at critical overturning (Ac ≈ 0.959). Disturbance u-winds (left) and
vertical motion w (right) are shown with negative values dashed. Contours are spaced at 0.25
of maximum disturbances (|u|max ≈ 1.00U , |w|max ≈ 1.57σU). The downstream waves have a
wavelength that is roughly 2πσ.

∆x = π/32) without upstream artifacts in the plot domain, the computational domain
size increased by a factor of 4 between σ = 0 and σ = 0.3. Although this increase obviously
affects the time and memory requirements for the computation, of more significant impact
is that the linear problem (4.2) has become, in a relative sense, more singular. This is
the ill-conditioning of the kernel matrix which manifests itself numerically through a
sensitivity due to errors of finite-precision arithmetic. One measure of this problem is the
log-condition number†, which translates into a conservative estimate for the number of
accurate digits lost by a linear solver. The log-condition number increased from 2.90 for
the hydrostatic case to 7.13 when σ = 0.3. Note especially that the Fourier coefficient
ĉ(k) for σ = 0.3 (Figure 3, bottom panel) displays little difference from the hydrostatic
case, and gives no indication that this degradation of conditioning has occurred.

Thus, numerical ill-conditioning is the Achilles’ heel for the Fourier-based method
that restricts the accurate computation of large amplitude solutions to those which are
weakly nonhydrostatic. Only those values of Ac(σ) marked by the circles in Figure 2
(up to σ = 0.35) were computed here by Fourier means (3.4). The dark dashed curve
of Figure 2 indicates values in (σ,A)-parameter space where the log-condition number
of the kernel matrix reaches 7 (with ∆x = π/32 and N = 1023). The light dashed
curve indicates the threshhold for a log-condition number of 9, at which point small
gridscale oscillations are observed in the computed coefficients ĉ(k). Although perhaps a
conservative estimate on the (double-precision) computability of Long’s solutions, these
curves are consistent with the value of σ = 0.5 as the last data point in the Fourier-
based calculations of Laprise & Peltier (1989)‡. The values of Ac(σ) in Figure 2 that are
larger in the nonhydrostatic parameter σ > 0.35 were computed by a totally different
mathematical approach. The boundary integral method, which overcomes the limitation
inherent in the conditioning of the Fourier-based formulation, is described in the next
Section.

† See Appendix A for further comments on matrix conditioning.
‡ Note that all computational methods which assume a Fourier representation (3.3) are os-

tensibly solving (3.4), and hence, whether direct or iterative, are still limited by the inherent
ill-conditioning of the first-kind formulation.
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5. The Boundary Integral Method
The Helmholtz equation (2.5) has long been studied for its application to the time-

harmonic scattering of waves. In particular, there is a well-established literature on lin-
ear integral equations and their computation via boundary integral methods. Based on
mathematical potential theory, these methods presuppose knowledge of the appropri-
ate Green’s function (Green 1969). For many classical applications in electromagnetics
or acoustics, the required Green’s function is a Hankel (complex-valued Bessel) func-
tion. However, this result is specific for a far-field behavior described by outgoing time-
harmonic waves, and is not the same as the downstream wave condition of Lyra’s linear
theory. It is little-known that the appropriate Green’s function for the Helmholtz equation
was derived by Lyra (1943) in the second of his original works.

For the nonhydrostatic case with σ = 1, Lyra’s expression for the free-space Green’s
function is

G(~x ) = −1
4
Y0(r)

− 1
π

∞∑
j=0

J2j+1(r)
cos(2j + 1)φ

2j + 1

(5.1)

where Y0(r) and Jn(r) are Bessel functions (Abramowitz & Stegun 1970). The polar
coordinates (r, φ) are centered with the origin in the (x, z)-plane. This free-space Green’s
function satisfies the Helmholtz equation with a delta function forcing at the origin,
without boundaries (i.e. free-space). It is therefore a solution of Long’s equation (2.5)
everywhere but the origin, where it has a logarithmic singularity from the Y0(r) Bessel
contribution. The series part is a nonsingular contribution that was devised by Lyra
(1943) to cancel the upstream waves.

Away from the singularity, the above Green’s function (as does any of its derivatives
and their translations) is a solution to the σ = 1 Helmholtz equation (2.5). The boundary
integral method exploits this fact by representing the general Helmholtz solution as an
integral superposition of Green’s functions whose singularities lie along the topographic
boundary. The boundary is defined by a (left-to-right) parametrization of the surface
topography

~ξ ≡
(
ξ
η

)
=
(

ξ
Ah(ξ)

)
(5.2)

over −∞ < ξ < +∞. The disturbance streamfunction is represented by an integral, along
the boundary ~ξ, that superimposes gradients of the Lyra Green’s function

ψ(~x ) = 2
∫
~ξ

µ(ξ)
∂G
∂n

(~x− ~ξ ) dξ (5.3)

where µ(ξ) is a density function to be determined by the surface condition (2.6)†. Since all
singularities of the integrand lie on the surface, the integral (5.3) satisfies the Helmholtz
equation (2.5) everywhere above the topography. Also, the far-field behavior is inherited
directly from the underlying Green’s function; this underscores the importance of Lyra’s
solution (5.1) as the choice for G(~x ). The kernel is a normal derivative defined by

∂G
∂n

= ~n(ξ) ·
(
Gξ
Gη

)
=
(
Ah′(ξ)
−1

)
·
(
Gξ
Gη

)
(5.4)

where ~n(ξ) is a normal vector into the topographic surface at ~ξ. This representation

† A similar use of Green’s function representation appears in Robinson (1969), most recently
revisited by Llewellen-Smith & Young (2003), for oceanic tidal flows over a barrier.
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Figure 5. A critical overturning solution using Lyra’s linear theory kernel (5.9). Stream-
lines (dark) and disturbance velocities (light) contours for the total streamfunction,
Ψ = z + 8.12Gz(x, z). Disturbance u-winds shown in left panel and vertical motion w in right
with negative contours dashed. Contours are spaced at 0.25 of maximum (|u|max ≈ 1.52U ;
|w|max ≈ 1.74U).

for a Helmholtz solution is known as a double-layer potential (Green 1969), and it only
remains to enforce the surface boundary condition (2.6).

Direct evaluation of the integral representation (5.3) is not possible for points on the
surface topography

~xs ≡
(

x
Ah(x)

)
(5.5)

as the integrand involves the singularity of the Green’s function at ξ = x. However,
there is a classical limit for boundary points that resolves the double-layer formula into
contributions from the local density, and the integral’s principal value which deletes the
singular point (Green 1969). Applying this textbook formula gives the surface version of
(5.3)

−h(x) = −µ(x) + 2 −
∫
~ξ

µ(ξ)
∂G
∂n

(~xs − ~ξ ) dξ (5.6)

where ψ(~xs) = −h(x) is taken from the boundary value (2.6). The result is a Fredholm
integral equation for µ(ξ) that is of the desired second-kind variety (Wing 1991).

In the limit of zero height topography (A = 0), the boundary ~ξ flattens to the η = 0
axis, and the kernel (5.4) simplifies to ∂G/∂n = Gz(x− ξ, 0). The integral equation (5.6)
becomes

−h(x) = −µ(x) + 2 −
∫ +∞

−∞
µ(ξ) Gz(x− ξ, 0) dξ , (5.7)

and since Gz(ξ, 0) is exactly zero in the principal value integral — the linear theory
solution is simply µ(x) = h(x). The solution at interior points (5.3) then reduces to the
convolution integral

ψ(x, z) =
∫ +∞

−∞
h(ξ) 2Gz(x− ξ, z) dξ (5.8)

and recovers Lyra’s general solution to linear theory as was quoted in the English-
language WMO Tech Report by Queney et al. (1960). The linear theory kernel, the



Large-Amplitude Topographic Waves in 2D Stratified Flow 11

z-derivative of (5.1), is given explicitly by

2Gz(~x ) =
1
2
Y1(r) sinφ

+
2
π

∞∑
j=1

J2j(r)
2j sin 2jφ

4j2 − 1
.

(5.9)

The generalization of the boundary integral formulas to σ 6= 1, which involve only rescal-
ings of x, is summarized in Appendix B.

For topography that is a delta function at the origin, h(x) = 4.06 δ(x), the (total) linear
streamfunction is Ψ = z+8.12Gz(x, z) — the significance of the factor of 4.06 corresponds
to the σ = 1 critically overturning flow. A plot of the streamlines and contours of u and
w are shown in Figure 5. It is apparent that this flow also has the interpretation of a
Long’s solution, as the zero contour of streamfunction acts as a localized, dome-shaped
obstacle. Although this flow strongly resembles the semi-circular flows of Kozhevnikov
(1968) and Miles (1968), that it is not the same can be discerned by noting that the
dome is displaced to the left of the origin. The cancellation of upstream waves is clearly
evident. Following Appendix B, the case for σ 6= 1 merely requires a rescaling of the
horizontal axis X = x/σ. Thus Figure 5 represents a family of critically overturning
flows for all nonhydrostatic values of σ, but for dome widths that scale on the wavescale
U/N = σL. For this case, the vertical motion w does not scale on σ. In Appendix B,
this special analytical solution assists in the computation of large amplitude wave flows.
The story behind this is discussed in the next Section.

6. The Boundary Integral Computations
Unlike the first-kind theory of Section 3, the reformulation of Long’s theory into a

second-kind integral equation eliminates issues wtih numerical ill-conditioning (Wing
1991). The simplest computational approach to (5.6) is an approximation of the inte-
gral by numerical quadrature over discrete ξm, for −N 6 m 6 +N , and unknowns
µm = µ(ξm). A determining set of 2N + 1 equations for the densities µm is obtained
by evaluating at 2N + 1 collocated positions xn = ξn. Such a numerical discretization
generically yields a well-conditioned linear problem as the µ(x)-term outside of the inte-
gral (5.6) leads to a matrix that is diagonally-dominant. Further details of the numerical
implementation, including a subtlety associated with the principal value at the singular
points (B 3), are deferred to Appendix B.

Figure 6 shows a strongly nonhydrostatic solution for moderate height topography
(σ = 2.0, A = 0.4). This height is well-below that required for critical overturning, The
log-condition number of the linear solver is 1.01, although the flow parameters are just
outside the computable region for the first-kind solver (Figure 2). In contrast with Fourier
methods, a solution based on Lyra Green’s function (5.1) ensures that there cannot be
upstream artifacts.

The flow of Figure 6 consists of a slowly decaying train of downstream waves with hor-
izontal wavelength 2πσ. The x−1/2 far-field dispersion of the waves matches both linear
theory (Smith 1980), and the characteristic decay of the Bessel functions (Abramowitz
& Stegun 1970). The far-field pattern of wavefronts, as suggested by the zero contours
of u and w, coincide nearly with those of the linear theory kernel solution of Figure 5.

Surface values for u and w are shown in Figure 7, and is where the largest disturbance
flows are found. The fastest u-disturbance (umax ≈ 0.84U) is now found at the ridge
summit; as opposed to an interior point as in Figures 1 and 3. There is also considerable
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Figure 6. Steady streamlines (dark) and disturbance velocities (light) contours for a strongly
nonhydrostatic (σ = 2.0) flow over a moderate height ridge (A = 0.4). Disturbance u-winds
(left) and vertical motion w (right) are shown with negative values dashed. Contours are spaced
at 1/4 of maximum disturbances (|u|max ≈ 0.84U , |w|max ≈ 0.34σU) with an extra contour to
show the small amplitude waves (1/12 in u, 1/16 in w). Note that the zero velocity contours are
essentially identical with those of Figure 5.
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Figure 7. Surface values for the disturbance u-wind (dark solid) and vertical motion w
(dark dashed) for the case of Figure 6. Maximum disturbances are |u|max ≈ 0.84U and
|w|max ≈ 0.35σU . The Gaussian topography h(x) is indicated for reference (light solid).

deceleration of the horizontal wind on the upstream (umin ≈ −0.38U) and downstream
lower slopes. The extremes of the vertical motion (wmax ≈ 0.34σU ; wmin ≈ −0.35σU)
are located on the ridge flanks.

Although the second-kind formulation has resolved the conditioning issue, two other
serious numerical issues are encountered at higher, near-overturning heights. A foreshad-
owing of the first problem is seen in the left panel of Figure 8, which shows the density
µ(x/σ) relative to the Gaussian topography h(x). Near the origin, µ(x/σ) is a slightly
amplified version of the linear solution h(x), but has a slow x−1/2 decaying oscillation.
For this moderate amplitude case, capturing the tail requires a computational ξ-domain
in excess of ±100 (with ∆s = 0.05 arclength spacing at the origin and N = 512) to
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Figure 8. The computed density µ(x/σ) (dark solid, left panel) for the σ = 2.0 flow (A = 0.4) of
Figure 6. The modified density µe(x/σ) (dark solid, right panel) is shown for the overturning flow
(Ac ≈ 1.562) of Figure 10. Note the change in vertical scale between the panels. The oscillatory

tails have wavelength 2πσ whose envelopes (light solid) decay as x−1/2. The topographies,
h(x), are shown (dashed) for comparison. The µ(x/σ) in the left panel is a perturbation of
the topography h(x), which is the A = 0 solution. However, the µe(x/σ) in the right panel
mirrors the effective topography he(x) (B 4).

obtain at least four-digit accuracy in interior velocities. As the obstacle height increases,
so does the amplitude of this oscillatory tail. Maintaining accuracy of the flow solution,
especially in the vicinity of the topography, requires larger downstream domains to cor-
rectly capture the tail of µ(x/σ). The second issue, and a much more serious one, is that
calculating near-surface values and gradients of the boundary integral formula (5.3) is
extremely problematic, due to the kernel singularity. For surface winds, which require
surface gradients, there is no analog of the limit formula like that used to obtain (5.6).
This is one of the fundamental drawbacks of boundary integral methods – far-field quan-
tities are easily obtained to a high degree of accuracy, but near-surface values are not.
The surface values shown in Figure 7 have been obtained by careful extrapolation of
near-surface values. An independent check on these surface values, us(x) and ws(x), is
that the surface flow should follow the topography

ws(x)−Ah′(x) (1 +Aus(x)) = 0 , (6.1)

and when applied to the curves of Figure 7, reveals discrepancies as large as 0.02. This
problem becomes more pronounced for large amplitude wave flows so that accurate values
of surface winds and pressures (and alas, pressure drag) for such flows as those of Figure 2
cannot yet be included here.

There is, however, a resolution to the first problem, at least for the case of flow over
a ridge. The basic idea is to exploit the linearity of the Helmholtz equation and the
similarity of the downstream wavetrain (Figure 6) with the Lyra linear kernel (Figure 5).
An enormous boost in effectiveness is gained by computing, not the entire solution, but
only the difference from the linear theory kernel (5.9). This is how the critical overturning
flow for σ = 1.0 (Ac ≈ 1.391) is computed. The streamlines are shown in Figure 9 and,
despite the difference in obstacle geometry, has a far-field that is nearly identical to the
critical Lyra flow of Figure 5. This is the last key idea needed to allow the extension
of the critical curve of Figure 2 into the region of strongly nonhydrostatic flows. The
modification to the integral formulas for the difference computation (B 4) is outlined in
Appendix B.

Figures 9 and 10 illustrate two of the critical values of Figure 2 beyond the reach of
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Figure 9. Steady streamlines (dark) and disturbance velocities (light) contours for a moderately
nonhydrostatic (σ = 1.0) flow at critical overturning (Ac ≈ 1.391). Disturbance u-winds (left)
and vertical motion w (right) are shown with negative values dashed. Contours are same as
Figure 5 to illustrate the similarity of the far-field waves. Significant differences appear only in
the vicinity of the topography.
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Figure 10. Steady streamlines (dark) and disturbance velocities (light) contours for a strongly
nonhydrostatic (σ = 2.0) flow at critical overturning (Ac ≈ 1.562). Disturbance u-winds (left)
and vertical motion w (right) are shown with negative values dashed. Contours are same as
Figure 5 to illustrate the similarity of the far-field waves. There is no real difference with the
flow of Figure 9 except over the upslope and downslope of the topography.

traditional Fourier-based solvers (σ = 1.0, Ac ≈ 1.391 and σ = 2.0, Ac ≈ 1.562). The log-
condition numbers for these linear problems were 2.47 and 2.80. Up to rescaling of x, the
far-fields are well-anticipated by the linear theory kernel solution of Figure 5. Both cases
use common contour levels (4 non-zero levels shown), but Figure 10 would have a crush
of u contours at the summit if more (equi-spaced) levels had been shown. To portray
with reasonable accuracy both the far-field and the near-surface contours in Figure 10, a
computational ξ-domain in excess of ±200 was used (with ∆s = 0.01 arclength spacing
at the origin and N = 1024).

The right panel of Figure 8 shows the modified density µe(x/σ) for the flow of Figure 10
based on a solution using the effective topography (B 4). The additional oscillations near
the origin reflect the more complex structure of the effective topography he(x). The
amplitude of the oscillatory tail is still quite substantial by comparison to the left panel
despite that µe(x/σ) is the density for only the difference from the Lyra flow.
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Figure 11. Critically overturning heights, Ac(σ), for bell-shaped topography as a function of
the nonhydrostatic parameter. Circles indicate values computed using the Fourier-based integral
equation (3.4), while asterisks indicate cases computed using the boundary integral equation
(5.6). A best-fit estimate of the upper asymptotic value of 1.79 is indicated by the dark thin line
(7.2).

7. Estimate of Critical Height Asymptote
This implementation of a boundary integral method shows that the ill-conditioning

problem which has limited previous computational studies of Long’s theory can be over-
come. The computation has been applied to extending the critical overturning curve
(Figure 2) as a function of the nonhydrostatic parameter. The results indicate that the
critical value of height for overturning reaches an upper limit for large σ. A best-fit
algebraic asymptote is calculated

Ac ∼ (1.73)− (0.34)σ−0.99 (7.1)

based on the values for 1 6 σ 6 4 shown in Figure 2. Accuracy issues in the zero-finding
algorithm limit become problematic beyond σ = 4. It is noted that, while the quality
of the fit curve supports the existence of the asymptote, the error criterion for the fit is
fairly flat in the limiting value. So the value of 1.73 could easily be shifted by a couple
of percent, however, as the integral equation solver can be run with A = 1.73 at larger
σ (independently from the zero finding algorithm) — this appears to be a conservative
estimate for an upper bound. This saturation of the critical height is consistent with the
behavior of the critical flow defined by the Lyra linear kernel (5.9). This flow has the
special properties that it overturns for precisely the same height of dome for all values
of σ, and has a far-field flow (which includes the overturning region) that is a good
approximation of the Gaussian topographic flow at large σ.

The overturning analysis has also been carried out for the bell-shaped topography,
h(x) = 1/(1 + x2). The critical overturning curve is shown in Figure 11. A best-fit
algebraic asymptote is calculated

Ac ∼ (1.79)− (0.47)σ−0.79 (7.2)

based on the values for 1 6 σ 6 4, and the similar caveats apply as noted for the Gaussian
ridge.

8. In Closing
It has been shown that Long’s theory admits steady flow solutions up to overturning

conditions for scales from the hydrostatic through the strongly nonhydrostatic regimes.
In particular, the computational difficulties encountered for nonhydrostatic and large
amplitude flows are due to numerical ill-conditioning expected when solving first-kind
integral equations. Here, the boundary integral method has been shown to perform well
for moderate and strongly nonhydrostatic flows. Although the zero-finding algorithm
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seems to require extremely large discretizations to preserve accuracy beyond σ ≈ 4,
the integral equation solver alone (away from the surface) still performs at smaller am-
plitudes. However, by the singular nature of the Lyra Green’s function at σ = 0, the
boundary integral method is not useful for nearly hydrostatic flows. Hence, the Fourier
and boundary integral methods are complementary approaches for computing Long’s
theory across the full range of parameters.

Although the Helmholtz equation is one of the standard textbook equations of math-
ematics, it should be noted that the issue of uniqueness of solution is still an area of
active research for the geometry of a perturbed half-plane (Chandler-Wilde & Zhang
1999). Non-uniqueness would arise in the form of a nonzero solution to (5.6) with a zero
on the left-side of the equation. Such a solution would indicate a resonance, and in a
numerical computation would generate a near-singular matrix (for reasons distinct from
the ill-conditioning of first-kind integral equations). The current state of mathematical
proof suggests that there should be no problems for sufficiently small topography, and
no such near-singularity was encountered in this study. Nonetheless, the possibility of
resonance cannot be ruled out for more severe topographic profiles.

The boundary integral method presented here allows for the robust and accurate com-
putation of the far-field flow for parameter values previously unattainable. Computations
using this method, for a four-peaked obstacle, were used as an inviscid baseline for in-
terpreting the laboratory experiments in Aguilar et al. (2006). The computed Long’s
solution demonstrated that, while the experimental parameters for the case of the high-
est topography corresponded to a severely overturning flow, viscous effects were sufficient
to suppress the appearance of wave turbulence. Typical of the nonhydrostatic and nonlin-
ear regime is a large amplitude wave response with an extended downstream wavetrain.
The extremal u and w occur on the topographic surface, but have not yet been accu-
rately computed. It is a quirk of the mathematics of potential theory that, despite the
ignorance of the near-field details, the far-field flow can be computed with great accu-
racy. This inability to address surface conditions constitutes a serious weakness which
will hopefully be remedied by future insights. The flows of Figures 9 and 10 were made
computed via the difference from the Lyra Green’s function. While this finesse works for
upward topographic profiles, it is useless for deep valley flows since the Green’s function
is singular at the origin which is part of the flow domain. Adapting techniques for cavity
geometries for depression topography is one direction for future consideration.
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Appendix A. The Fourier Implementation
Using trapezoidal rule for the quadrature approximation of (3.6) by (4.1), the elements

of the matrix K are given by

Knm = ∆k



K(xn, 0+) +K(xn, 0−)
2

for m = 0

K(xn, k−N )
2

for m = −N

K(xn, kN )
2

for m = +N

K(xn, km) otherwise

(A 1)

where the weights of the quadrature are generically wm = ∆k with exceptions at the
endpoints where the contribution is halved. Special care must be taken at k = 0, since
it represents a point of discontinuity of the kernel function (3.5). The appropriate value
of k0 = 0 matrix elements is the average of the K(x, 0+) and K(x, 0−) limits. Once
the coefficients ĉm are obtained from the linear solution of (4.2), the streamfunction
evaluation at any interior point (x, z)

ψ(x, z) = −
N∑

m=−N
wm e

i(kmx+m(km)z) ĉm (A 2)

is a matrix multiply. The (nondimensional) flow velocities (u = 1 + ψz and w = −ψx)
are calculated using the differentiations of (A 2).

With uniform discretizations, it is also essential that the product of ∆k∆x satisfy the
condition

∆k∆x =
π

N + 1
(A 3)

in order for the matrix solution (4.2) to be computationally tractable. This is again
the issue of numerical conditioning (Trefethen & Bau 1997), which is the susceptibility
of numerical solutions of large linear systems to the accumulation of round-off errors.
The base-10 logarithm of the matrix condition number gives a rough indication of the
number of digits lost due to finite-precision round-off (out of 16 digits in double-precision
arithmetic). As an indication of the sensitivity in this matrix conditioning, a 2% change
in the product ∆k∆x in either direction from (A 3) leads to a potential digit loss in
excess of 17, and thus renders a double-precision numerical solution meaningless. This
condition on ∆k∆x derives from the fact that for A = 0, the integral equation (3.4)
is a Fourier transform which is an exceptional case that is perfectly conditioned. With
(A 3), the kernel matrix (3.5) for A = 0 is then very nearly the perfectly-conditioned
discrete Fourier matrix. For finite, nonzero values of A, the conditioning degrades but
not so much as to prevent numerical solution of (3.6) up to the critical overturning in the
hydrostatic case of Figure 1. This is distinct from the loss of conditioning with respect
to increasing the nonhydrostatic parameter σ which is the subject of Section 4.

Appendix B. The Boundary Integral Implementation
Generalizing the integral formulas for σ 6= 1 requires only that the horizontal coordi-

nate be scaled on the wavescale U/N instead of L. In terms of X = x/σ, the disturbance
streamfunction, ψ(X, z), satisfies the σ = 1 Helmholtz equation and permits the use of
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the Lyra Green’s function G(X, z). For σ 6= 1, the equation for the density (5.6) becomes

−h(σX) = −µ(X) + 2 −
∫
~ξ

µ(ξ)
∂G
∂n

( ~Xs − ~ξ ) dξ (B 1)

where the surface parametrization and normal derivative are defined with respect to
the (X, z) coordinates. Then, the integral representation (5.3) of the solution in (X, z)
coordinates becomes

ψ(X, z) = 2
∫
~ξ

µ(ξ)
∂G
∂n

( ~X − ~ξ ) dξ . (B 2)

from which the horizontal wind u(X, z) = ψz(X, z) and vertical motion w(X, z) =
−ψX(X, z)/σ are obtained. All quantities are plotted on axes in terms of the x values.

The quadrature points ξm for the integral in (5.6, or B 1) need not be uniformly spaced.
Near the ridge, uniform spacing in arclength (∆s) is found to work well; while for the far-
field downstream, 10-12 points per wavelength proves adequate. Trapezoidal rule is used
for the quadrature. With the collocated discretizations, xn = ξn, the diagonal elements
of the quadrature matrix from (5.6) are evaluations at the singularity of the Lyra kernel
(5.4). An advantage of the double-layer potential formulation is that the Lyra kernel has
a finite (l’Hôpital) limit as the contour approaches the singularity point

lim
~ξ→ ~Xs

∂G
∂n

( ~Xs − ~ξ ) = − 1
4πR

(B 3)

where R is the radius of curvature of the contour ~ξ in (X, z) coordinates.
For the critical overturning computations, considerable reduction of the oscillatory tail

(by a factor of roughly 5 for Figure 8) is obtained by computing only the difference from
the Lyra kernel solution (Figure 5). The only change is the replacement of h(x/σ) the
left-side of (B 1) by an effective topography

he(σX) = h(σX)− (8.12)Gz(X,Ah(σX)) . (B 4)

Finally, as with the Fourier method of Section 3, the choice of plot points is completely
independent of the quadrature points which are used to determine µ(X). The numeri-
cal evaluation of boundary integrals, once µ(X) is known, is quite accurate away from
the boundary contour — in particular, the overturning points. Note that it is far more
accurate to evaluate the velocities u and w by integrating the derivative kernel of (5.3)
instead of finite-differencing the streamfunction.

Near the surface, the boundary integral methods require special treatment. One simple
approach for computing values close to (and on) the boundary, is to use an interpolation of
the µ(X) onto a denser discretization (say, a factor of 10). Gridded values for contouring
are then obtained by interpolation or extrapolation of near-surface values.
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