A Few Surprises in 2D Nonlinear Flow over Topography

> computing Long's theory with exact surface boundary conditions
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Lilly/Klemp 1979

> Dave Muraki (Simon Fraser University)

Miles/Huppert 1968



Revisiting Long's 1953 Theory

Two-Dimensional Primitive Equations

> inviscid, incompressible, Boussinesq buoyancy

Ury + wy, = 0
Du _
E - _¢x
p2PY g = g,
Dt
g—i + w = 0

> nonhydrostatic parameter (6 = U/NL) & height scale (A= NH/U)

> potential temperature (6) & geopotential (¢)

Steady Streamfunction: ¥ (x, z) = z + ¥ (z, 2)

> uniform upstream wind U & constant stratification N

> exact reduction to linear Helmholtz equation for disturbance streamfunction

6272%1: =+ @Zzz + ¢y =0
> topographic surface at z = Ah(x) & streamline condition — ¢ (x, Ah(z)) =0

> radiation/decay BCs aloft



Long 1955: Theory & Experiment
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Finite Amplitude Topography

> on streamline boundaries: v = Ah(z) + ¢ (x, Ah(z)) = constant
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Linearized Surface Condition

- A [T, .
w(m’ Z) _ 7t h(k’) ez(kx—l—m(k)z) dk
21 J_ o
Fourier Solution (for small A)
> boundary at z = 0 & linearized topographic condition — Ah(z) + ¢(x,0) =0
> aloft conditions via vertical mode number (§2k% 4+ m? = 1)
sign(k) V1 — §2k2 for |0k| < 1 (long scale radiation)
m(k) = 5
i VI'k?Z -1 for |6k| > 1 (short scale decay)

streamlines & disturbance u (U/NL = 0, NH/U = 0.85)

z-axis (wave height units)

x—axis (mtn width units)



General Helmholtz Solution
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Fourier Representation

> satisfies aloft conditions (52k2 + m2 = 1)

> surface at z = Ah(xz) & exact topographic condition — Ah(x) + ¢ (x, Ah(z)) =0
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Fredholm Integral Equation of the First-Kind

> linearity: action of integral operator is linear in unknown coefficients ¢(k)

> numerical solution equivalent to matrix inversion
> velocities from spectral differentiation: v = ¢, & w = —,

> no need to compute Fourier transform: c(x) — effective topography



Direct Steady Solve
+00 _
h(:l)) . / (Aj(k) ez(kx—l—m(k)Ah(x)) dk = 0

Numerical Discretization

> collocation points: {x1 ... T ... TN} & N knowns: hy = h(zq)

> wavenumbers: {k1 ... kg ... kn} & N unknowns: ég = é(kg)

> approximate integral at each x by quadrature over 3 =1...N
N
ha . E 6,3 ei(kﬁxa—l—m(kﬁ).ﬁlh(a}a)) Ak = 0
/8:1 - -~ _/
Ko,

Matrix Inversion

> N linear equations in N unknowns: (h_(;) = [Ka,ﬁ] (c;)

> m(k) is discontinuous at kK = 0 — half-line integrals

> full matrix K can be ill-conditioned — catastrophic loss of precision as N increases



Numerical Implementation

Fourier Conditioning
> A = 0 recovers linear theory & discrete Fourier transform is well-conditioned

> equi-spaced discretizations with Ak Az = 27 /N is essential

fourier amplitudes: A =0.85, & =0, conditioning = 2.5382 streamlines & disturbance u (U/NL = 0, NH/U = 0.85)
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> Lilly/Klemp 1979, hydrostatic critical overturning (A =~ 0.85)
— N = 256, 1.1s to solve & 2.0s to plot

> Fourier representation allows periodic wrap-around — large computational domains



A Nonhydrostatic Example

Laprise & Peltier, 1988

> predictor/corrector to obtain effective topography c(x) — typically 50 iterations
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u (U/NL = 0.5, NH/U = 1)

streamlines & disturbance

(snun ybBiay anem) sixe-z

x(km)

> large amplitude A = 1.0 & moderately nonhydrostatic § = 0.5

> N = 2056, s

5.75

256: 284s to solve, 89s to plot, log-condition number



A Strongly Nonhydrostatic Example

0=10 & A=0.5




Mountain vs Valley

0=03 & A=40.96

> both cases near critical overturning

> very little asymmetry in overall magnitude of response (unlike rotating case)

streamlines & disturbance u (U/NL = 0.3, NH/U = 0.98)

z-axis (wave height units)
z-axis (wave height units)
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Extended Topography

0=05 & A==0.5

> largest response associated with downslope

> slightly more wind in valley case: 0.32 < ut < 1.77 vs 0.26 < u~ < 1.82

streamlines & disturbance u (U/NL = 0.5, NH/U = 0.5) streamlines & disturbance u (U/NL = 0.5, NH/U = -0.5)
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Lyra's Topographic Greens Function

Delta Function Topography
> from Lyra 1940 & 1943 (via Alaka 1960) for 6 = 1: Bessel series

. 1 1 SN 4
Y(r,0) = EYl(r) sinf + — ; 4n2—n_1 Jop (r) sin 2n6

> critical overturning for delta strength ~ 4.06

Lyra’s topographic greens function
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z-axis (wave height units)

x—axis (mtn width units)



Topographic Boundary Conditions

Direct Computation

>

>

>

>

consistent with spectral radiation condition
elementary formulation for non-iterative solve

Long’'s theory: hydrostatic & nonhydrostatic

Fredholm first-kind integral equation is generally ill-conditioned
— possible resolution via Lyra’'s greens function

Fourier representation allows for wrap-around of waves

& disturk e u (U/NL =0, NHU = 0.5)

z-axis (wave height units)

x-axis (mtn width units)

open issues in stability of Long's solutions?
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