A Few Surprises in 2D Nonlinear Flow over Topography

Dave Muraki (Simon Fraser University)

Revisiting Long's 1953 Theory __

Two-Dimensional Primitive Equations

inviscid, incompressible, Boussinesq buoyancy

$$u_{x} + w_{z} = 0$$

$$\frac{Du}{Dt} = -\phi_{x}$$

$$\delta^{2} \frac{Dw}{Dt} - \theta = -\phi_{z}$$

$$\frac{D\theta}{Dt} + w = 0$$

- riangle nonhydrostatic parameter $(\pmb{\delta}=U/NL)$ & height scale $(\pmb{\mathcal{A}}=NH/U)$
- \triangleright potential temperature (θ) & geopotential (ϕ)

Steady Streamfunction: $\psi(x,z)=z+\tilde{\psi}(x,z)$

- ightharpoonup uniform upstream wind U & constant stratification N
- \triangleright exact reduction to <u>linear</u> Helmholtz equation for disturbance streamfunction

$$\delta^2 \, \tilde{\psi}_{xx} \, + \, \tilde{\psi}_{zz} \, + \, \tilde{\psi} \, = \, 0$$

- $\,\,\,\,\,\,\,\,\,\,\,$ topographic surface at $z={\cal A}h(x)\,$ & streamline condition $\,\,\,\,\,\,\,\,\,\,\,\,\,\psi(x,{\cal A}h(x))=0$

$$\delta^2 \tilde{\psi}_{xx} + \tilde{\psi}_{zz} + \tilde{\psi} = 0$$

Finite Amplitude Topography

 \triangleright on streamline boundaries: $\psi = Ah(x) + \tilde{\psi}(x, Ah(x)) = \text{constant}$

Linearized Surface Condition -

$$\tilde{\psi}(x,z) = -\frac{\mathcal{A}}{2\pi} \int_{-\infty}^{+\infty} \hat{h}(k) e^{i(kx+m(k)z)} dk$$

Fourier Solution (for small A)

- ho boundary at z=0 & <u>linearized</u> topographic condition ightarrow ${\cal A}h(x)+\tilde{\psi}(x,0)=0$
- $hd = {
 m aloft}$ conditions via vertical mode number $(\delta^2 k^2 + m^2 = 1)$

$$m(k) = \begin{cases} \sin(k) \sqrt{1 - \delta^2 k^2} & \text{for } |\delta k| \le 1 \text{ (long scale radiation)} \\ i \sqrt{\delta^2 k^2 - 1} & \text{for } |\delta k| \ge 1 \text{ (short scale decay)} \end{cases}$$

General Helmholtz Solution _

$$\tilde{\psi}(x,z) = -\mathcal{A} \int_{-\infty}^{+\infty} \hat{c}(k) e^{i(kx+m(k)z)} dk$$

Fourier Representation

- \triangleright satisfies aloft conditions $(\delta^2 k^2 + m^2 = 1)$
- $> \quad \text{surface at } z = \mathcal{A}h(x) \quad \& \quad \underline{\text{exact}} \text{ topographic condition } \\ \rightarrow \quad \mathcal{A}h(x) + \tilde{\psi}(x, \mathcal{A}h(x)) = 0$

$$h(x) - \int_{-\infty}^{+\infty} \hat{c}(k) e^{i(kx+m(k)Ah(x))} dk = 0$$

Fredholm Integral Equation of the First-Kind

- riangleright linearity: action of integral operator is linear in unknown coefficients $\hat{c}(k)$
- numerical solution equivalent to matrix inversion
- ightharpoonup no need to compute Fourier transform: $c(x) o ext{effective topography}$

Direct Steady Solve ____

$$h(x) - \int_{-\infty}^{+\infty} \hat{c}(k) e^{i(kx+m(k)Ah(x))} dk = 0$$

Numerical Discretization

- riangle collocation points: $\{x_1 \ \dots \ x_lpha \ \dots \ x_N\}$ & N knowns: $h_lpha = h(x_lpha)$
- riangle wavenumbers: $\{k_1\ \dots\ k_eta\ \dots\ k_N\}$ & N unknowns: $\hat{c}_etapprox\hat{c}(k_eta)$
- \triangleright approximate integral at each x_{α} by quadrature (trapezoidal rule) over $\beta = 1 \dots N$

$$h_{\alpha} - \sum_{\beta=1}^{N} \hat{c}_{\beta} \underbrace{e^{i(k_{\beta}x_{\alpha} + m(k_{\beta})\mathcal{A}h(x_{\alpha}))} w_{\beta} \Delta k}_{\mathbf{K}_{\alpha,\beta}} = 0$$

Matrix Inversion

- hd N linear equations in N unknowns: $(\vec{h_lpha}) = \left[\mathbf{K}_{lpha,eta}
 ight] \left(\vec{c_eta}
 ight)$
- hd m(k) is discontinuous at $k=0 o ext{half-line}$ integrals
- ightharpoonup full matrix ${f K}$ can be ill-conditioned ightharpoonup catastrophic loss of precision as N increases

Numerical Implementation -

Fourier Conditioning

- \triangleright $\mathcal{A}=0$ recovers linear theory & discrete Fourier transform is well-conditioned
- ho equi-spaced discretizations with $\Delta k \ \Delta x = 2\pi/N$ is <u>essential</u>

- \triangleright Lilly/Klemp 1979, hydrostatic critical overturning ($\mathcal{A} \approx 0.85$)
 - $\rightarrow N=256$, 1.1s to solve & 2.0s to plot
- ightharpoonup Fourier representation allows periodic wrap-around ightharpoonup large computational domains

A Nonhydrostatic Example _

Laprise & Peltier, 1988

ightarrow predictor/corrector to obtain effective topography c(x)
ightarrow typically 50 iterations

- \triangleright large amplitude $\mathcal{A}=1.0$ & moderately nonhydrostatic $\delta=0.5$
- ho N=2056, $x_{\infty}=256$: 284s to solve, 89s to plot, log-condition number =5.75

A Strongly Nonhydrostatic Example -

$$\delta = 1.0 \& A = 0.5$$

ightharpoonup -wind maximum shifts towards the summit as nonhydrostatic effect increases

Mountain vs Valley ___

$$\delta = 0.3 \& A = \pm 0.96$$

- both cases near critical overturning
- very little asymmetry in overall magnitude of response (unlike rotating case)

Extended Topography ___

$$\delta = 0.5 \& A = \pm 0.5$$

- > slightly more wind in valley case: $0.32 < u^+ < 1.77 \;\; {
 m vs} \;\; 0.26 < u^- < 1.82 \;\;$

Lyra's Topographic Greens Function -

Delta Function Topography

ho from Lyra 1940 & 1943 (via Alaka 1960) for $\delta=1$: Bessel series

$$\tilde{\psi}(r,\theta) = \frac{1}{2} Y_1(r) \sin \theta + \frac{1}{\pi} \sum_{1}^{\infty} \frac{4n}{4n^2 - 1} J_{2n}(r) \sin 2n\theta$$

 \triangleright critical overturning for delta strength pprox 4.06

Topographic Boundary Conditions _

Direct Computation

- consistent with spectral radiation condition
- ▷ elementary formulation for non-iterative solve
- - → possible resolution via Lyra's greens function

▷ open issues in stability of Long's solutions?