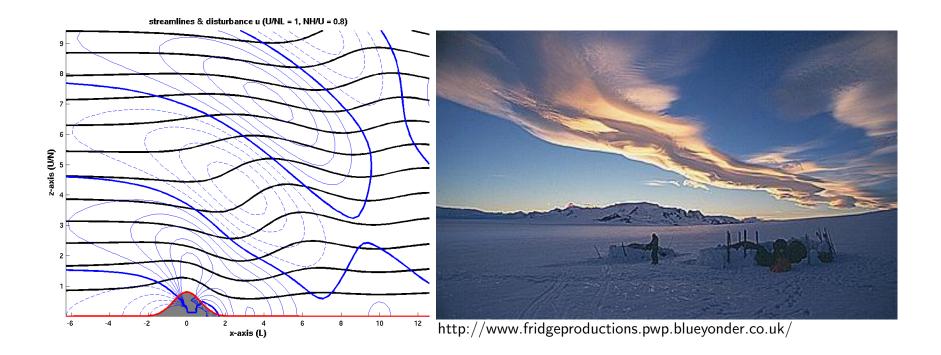
Waves Generated by Airflow over a Mountain Ridge

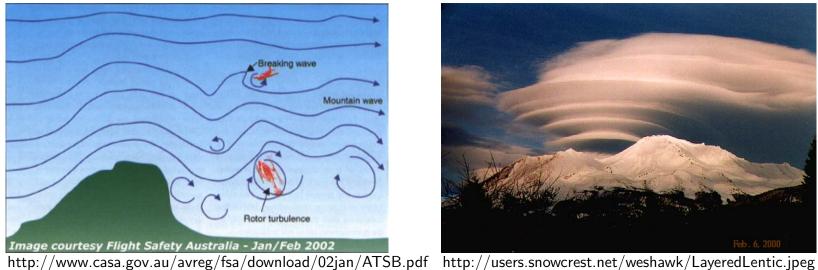
- ▷ a Helmholtz theory for steady waves in density-stratified flow
- ▷ linear instability & a critical resonant triad

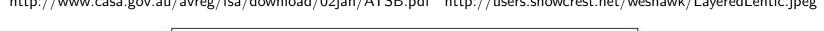


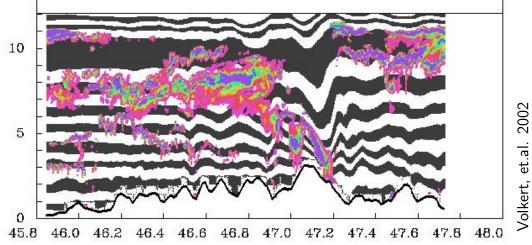
- ▷ Dave Muraki, Simon Fraser University
- ▷ Youngsuk Lee & David Alexander, SFU
- ▷ Craig Epifanio, Texas A&M

Topographic Gravity Waves.

Atmospheric Concerns







▷ mathematical story: idealized steady 2D flows & their stability

Atmospheric Fluid Dynamics ____

Fluid Dynamics & Thermodynamics

▷ incompressible 2D Euler equations with Boussinesq buoyancy

 $u_x + w_z = 0$ $\frac{Du}{Dt} = -\phi_x$ $\frac{Dw}{Dt} - B = -\phi_z$ $\frac{DB}{Dt} = 0$

Streamfunction & Vorticity

- \triangleright streamfunction, Ψ \rightarrow $u=\Psi_{z}$; $w=-\Psi_{x}$
- \triangleright vorticity, η \rightarrow $\eta = u_z w_x =
 abla^2 \Psi$

Vorticity/Buoyancy Formulation

$$\begin{array}{cccc} \triangleright & \text{vorticity inversion: } \nabla^2 \Psi = \eta \\ & & \frac{D\eta}{Dt} & + B_x & \rightarrow & \eta_t + J(\eta, \Psi) & + B_x & = & 0 \\ & & \frac{DB}{Dt} & & \rightarrow & B_t + J(B, \Psi) & = & 0 \end{array}$$

▷ 2D streamfunction advection: Jacobian determinant

$$J(f,\Psi) = \begin{vmatrix} f_x & \Psi_x \\ f_z & \Psi_z \end{vmatrix} = \begin{vmatrix} f_x & -w \\ f_z & u \end{vmatrix} = uf_x + wf_z$$

Steady Flow

- $\,\triangleright\,\,$ zero Jacobian condition: $J(B,\Psi)=0 \to B$ is constant along streamlines
- ▷ upstream/mean conditions (uniform wind & constant stratification):

$$\begin{array}{ccc} \Psi & = & \mathcal{U} \, z + \psi \\ B & = & \mathcal{N}^2 z + b \end{array} \right\} \quad \rightarrow \quad B = \frac{\mathcal{N}^2}{\mathcal{U}} \, \Psi$$

hdots zero Jacobian condition: localized disturbance streamfunction, $\psi(x,z)$

$$J(\eta, \Psi) + \frac{\mathcal{N}^2}{\mathcal{U}} \Psi_x = J\left(\nabla^2 \psi + \left(\frac{\mathcal{N}}{\mathcal{U}}\right)^2 \psi, \Psi\right) = 0$$

Long's Theory (1953)

Helmholtz Equation

 \triangleright linear Helmholtz equation for steady 2D streamfunction, $\psi(x,z)$

$$\nabla^2 \psi + \left(\frac{\mathcal{N}}{\mathcal{U}}\right)^2 \psi = 0$$

▷ special nonlinear solutions for constant stratification & uniform incident wind

Scales

▷ simple topographic case: three length scales

 $\mathcal{U}/\mathcal{N}=$ wave scale ; H= mountain height ; L= mountain width

▷ two dimensionless parameters

$$\mathcal{A} \equiv \frac{\mathcal{N}H}{\mathcal{U}}$$
, height parameter ; $\sigma \equiv \frac{\mathcal{U}}{\mathcal{N}L}$, nonhydrostatic parameter

Nondimensionalized Problem

- \triangleright Helmholtz equation ($\sigma \to 0$, hydrostatic case) $\sigma^2 \psi_{xx} + \psi_{zz} + \psi = 0$
- $\triangleright \quad \text{zero surface streamfunction: } \Psi(x, \mathcal{A}h(x)) = \mathcal{A}h(x) + \psi(x, \mathcal{A}h(x)) = 0$

A Fourier Approach _____

Fourier Modes, $e^{i(kx+mz)}$

- \triangleright Helmholtz dispersion relation: $m^2 = 1 \sigma^2 k^2$
- \triangleright sign choice \rightarrow far-field conditions: upward group velocity or decay (Queney, 1948)

$$m(k) = \begin{cases} \operatorname{sign}(k) \sqrt{1 - \sigma^2 k^2} & \text{for } |\sigma k| \leq 1 \text{ (long scale radiation)} \\ i \sqrt{\sigma^2 k^2 - 1} & \text{for } |\sigma k| \geq 1 \text{ (short scale decay)} \end{cases}$$

General Helmholtz Solution

▷ Fourier integral representation with far-field conditions

$$\psi(x,z) = -\mathcal{A} \int_{-\infty}^{+\infty} \hat{c}(k) \ e^{i(kx+m(k)z)} \ dk$$

 $\triangleright \quad z = \mathcal{A}h(x) \text{ surface condition: } \mathcal{A}h(x) + \psi(x, \mathcal{A}h(x)) = 0$

$$h(x) - \int_{-\infty}^{+\infty} \hat{c}(k) \ e^{i(kx+m(k)\mathcal{A}h(x))} \ dk = 0$$

- \triangleright linear integral operator on $\hat{c}(k) \rightarrow$ Fredholm integral equation of first-kind
- ▷ numerically equivalent to a matrix inversion

Direct Steady Solve ____

$$h(x) - \int_{-\infty}^{+\infty} \hat{c}(k) e^{i(kx + m(k)\mathcal{A}h(x))} dk = 0$$

Numerical Discretization

- \triangleright collocation points: $\{x_1 \ \ldots \ x_{lpha} \ \ldots \ x_N\}$ & N knowns: $h_{lpha} = h(x_{lpha})$
- \triangleright wavenumbers: $\{k_1 \ \ldots \ k_eta \ \ldots \ k_N\}$ & N unknowns: $\hat{c}_eta pprox \hat{c}(k_eta)$
- \triangleright approximate integral for each x_{α} by trapezoidal rule over $\beta = 1 \dots N$

$$h_{\alpha} - \sum_{\beta=1}^{N} \hat{c}_{\beta} \underbrace{e^{i(k_{\beta}x_{\alpha} + m(k_{\beta})\mathcal{A}h(x_{\alpha}))} w_{\beta} \Delta k}_{\mathbf{K}_{\alpha,\beta}} = 0$$

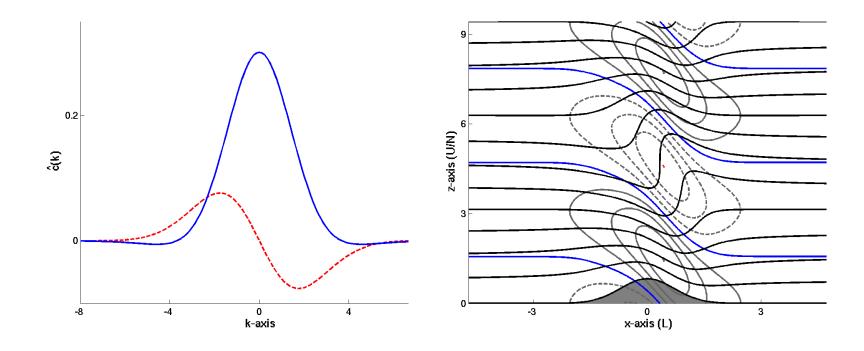
Matrix Inversion

- \triangleright N linear equations in N unknowns: $(\vec{h_{\alpha}}) = [\mathbf{K}_{\alpha,\beta}] (\vec{c_{\beta}})$
- $\triangleright \quad m(k)$ is discontinuous at $k = 0 \rightarrow$ half-line integrals
- \triangleright full matrix K can be ill-conditioned \rightarrow catastrophic loss of precision as N increases

Numerical Implementation _

Fourier Conditioning

- $\triangleright \quad$ for $\mathcal{A}=0$ linear theory, discrete Fourier transform is well-conditioned
- \triangleright equi-spaced discretizations with $\Delta k \, \Delta x = 2\pi/N$ is essential

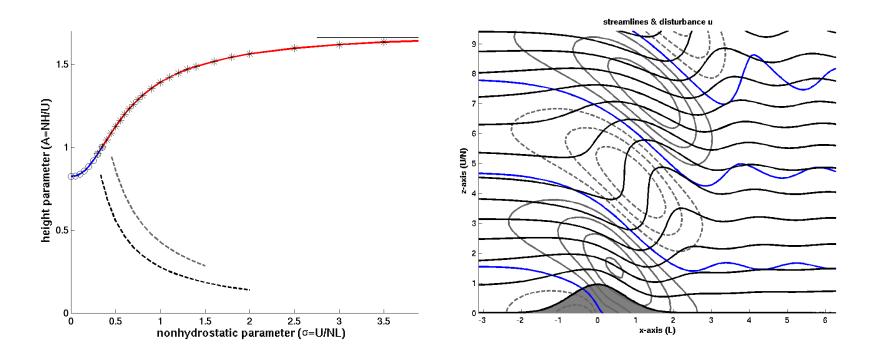


- hydrostatic ($\sigma = 0$), critical overturning ($A_c = 0.82$) case for gaussian topography
 N = 256, x_∞ = 8π: log-condition number = 2.85
- \triangleright Fourier representation allows periodic wraparound \rightarrow large computational domains

Critical Overturning I

Gaussian Topography

- \triangleright critical overturning height $\mathcal{A}_c(\sigma)$ as a function of nonhydrostatic parameter σ
- ▷ wavebreaking limit for static stability of density-stratified flow

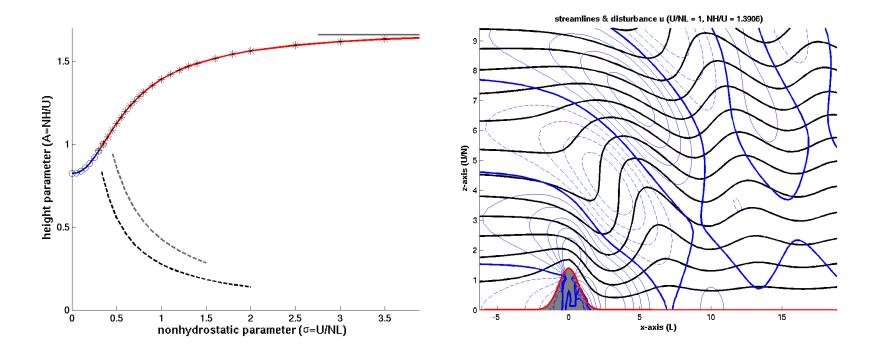


- ▷ Fourier formulation (o) limited by large condition numbers
 - ▷ ill-conditioning edge: 7 & 9 digits lost (- -)
 - $\triangleright \ \sigma = 0.35$ & $\mathcal{A}_c = 1.00$ shown above

Critical Overturning II _

A Boundary Integral Method Talk Goes Here . . .

- \triangleright for strongly nonlinear & nonhydrostatic flows ($\sigma \geq 0.3$)
- ▷ boundary integral method (*) remains well-conditioned ($\sigma = 1.0$ & $A_c = 1.39$ below)



 \triangleright second-kind Fredholm integral equation & non-standard Green's function $\mathcal{G}(\vec{x}_s, \vec{\xi})$ (Lyra, 1943)

$$h(\vec{x}_s) = \mu(\vec{x}_s) - 2 \int_S \mu(s) \frac{\partial \mathcal{G}}{\partial n} (\vec{x}_s - \vec{\xi}(s)) ds$$

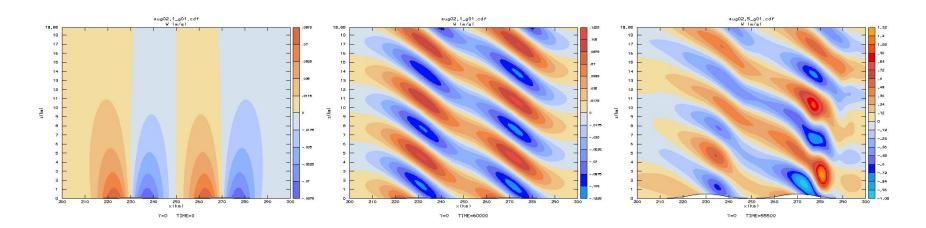
Question of Stability _

Gravity Wave Instability

- ▷ Mied (1976), plane gravity waves are parametrically unstable
- ▷ Lilly/Klemp (1979), instability observed for sinusoidal topography
- ▷ Scinocca/Peltier (1994), unstable dynamics near critical overturning

Time-Dependent Simulations (Craig Epifanio, Texas A&M)

- \triangleright twin peaks: hydrostatic ($\sigma = 0$), vertical motion w plots
 - $\,\triangleright\,$ initialized from potential flow
 - $\,\triangleright\,$ small height $\rightarrow\,$ Long's steady solution is stable
 - $\triangleright~$ medium height \rightarrow oscillatory instability to blow-up (${\cal A} \approx 0.5)$



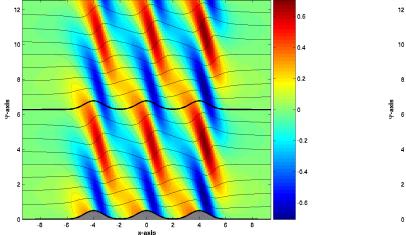
Linear Stability of Long's Steady Solutions _

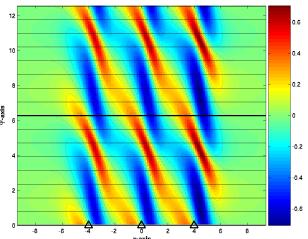
Hydrostatic ($\sigma = 0$) Disturbance Equations (David Alexander & Youngsuk Lee, SFU)

- $\begin{array}{rcl} \triangleright & \underline{\text{non-constant coefficients}} \text{ from Long's streamfunction } \Psi(x,z) \\ & & \tilde{\psi}_{zzt} & + \ J(\tilde{\psi}_{zz} + \tilde{\psi},\Psi) & + \ (\tilde{b} \tilde{\psi})_x & = \ 0 \end{array}$
 - $\tilde{b}_t + J(\tilde{b} \tilde{\psi}, \Psi) = 0$
- $\triangleright \quad \text{2D PDE eigenvalue problem for } \tilde{\psi} \to \tilde{\psi}(x,z) e^{\lambda t} \ \& \ \tilde{b} \to \tilde{b}(x,z) e^{\lambda t}$

Numerical Linear Algebra

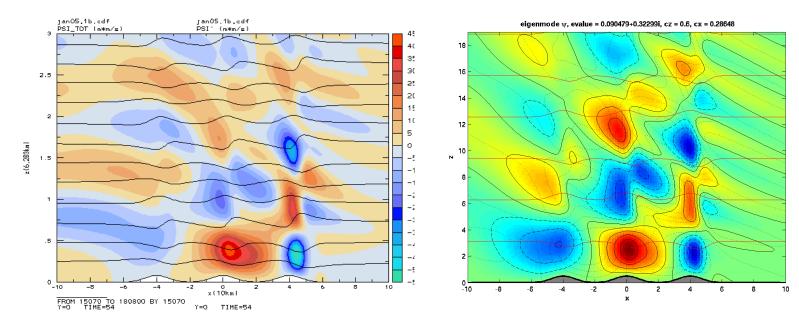
- $\triangleright \quad \text{steady streamline coordinates } (x, \Psi(x,z)) \rightarrow \text{lower boundary at } \Psi = 0$
- \triangleright self-adjoint formulation \rightarrow Arnoldi iterative search for eigenvalues (large & sparse)





A Search for Eigenvalues _

Simulated Instability vs Unstable Eigenfunction



3-peaks: a rough comparison of $ilde{\psi}(x,z)$. . . \triangleright

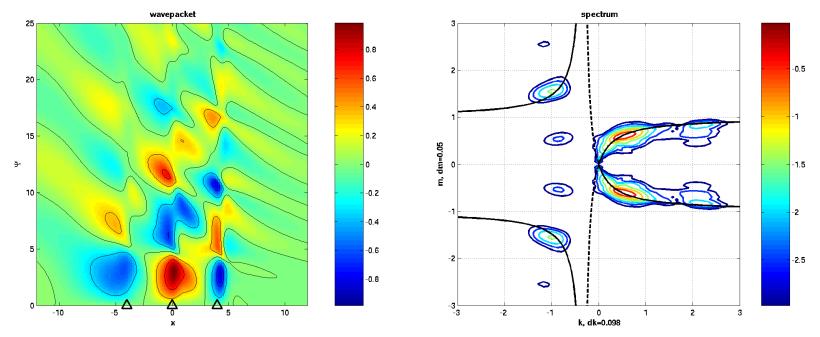
Observations & Results

- growth rate (≈ 0.05) & frequency (≈ 0.29) \leftrightarrow most unstable $\lambda = 0.09 + 0.32i$ \triangleright
- drift of cells upwind & upward from 3rd ridge \triangleright
- sharp node line running upward from 3rd ridge \triangleright
- cellular pattern above 1st ridge \triangleright
- plane waves far upstream & downstream \triangleright

An Idea from Turbulence Thinking -

Look at Fourier Spectrum

- \triangleright eigenmode of a <u>non-constant coefficient</u> PDE in a perturbed 1/2-space ($\lambda = 0.09 + 0.32i$)
- \triangleright transform with odd extension (to $\Psi < 0$) in streamfunction coordinates



Linear Waves

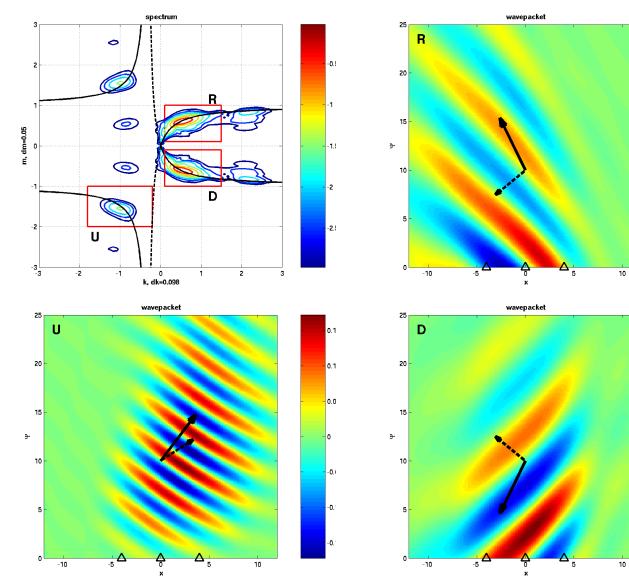
 \triangleright Fourier spectrum concentrated on (undisturbed flow) dispersion relation: $\omega(k,m) = -0.32$

$$\omega(k,m) = k \mp \frac{k}{|m|} \qquad ; \qquad \vec{c}_g(k,m) = \left(1 \mp \frac{1}{|m|} \ , \ \frac{k |m|}{m^2}\right)$$

▷ eigenmode is primarily a superposition of linear waves!

Spectral Wavepackets _

Inversion of Spectral Peaks



0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

0.4 0.3

0.2

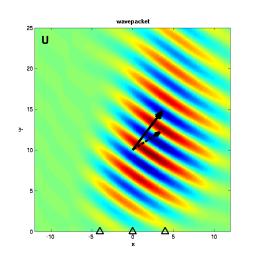
0.1

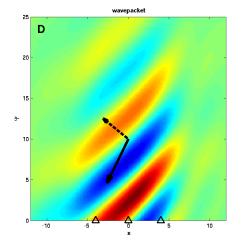
-0.1

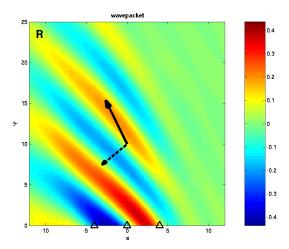
-0.3

Wavepacket Interference _

Phase (- -) & Group (—) Velocity Dynamics



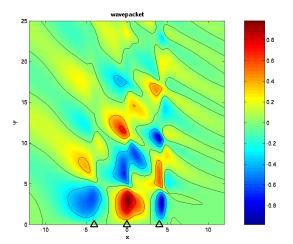




Observations Again

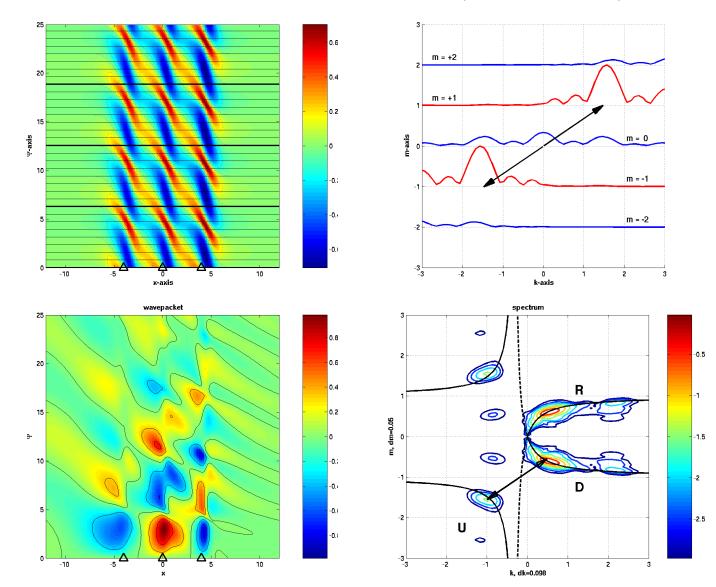
- $\triangleright\quad$ wavepackets satisfy $\omega(k,m)=-{\rm Im}(\lambda)=-0.32$
- \triangleright drift of cells upwind & upward from 3rd ridge
- \triangleright sharp node line running upward from 3rd ridge
- \triangleright cellular pattern above 1st ridge
- ▷ plane waves far upstream & downstream

What Mechanism Generates the U & D Wavepackets?



A Resonant Triad _

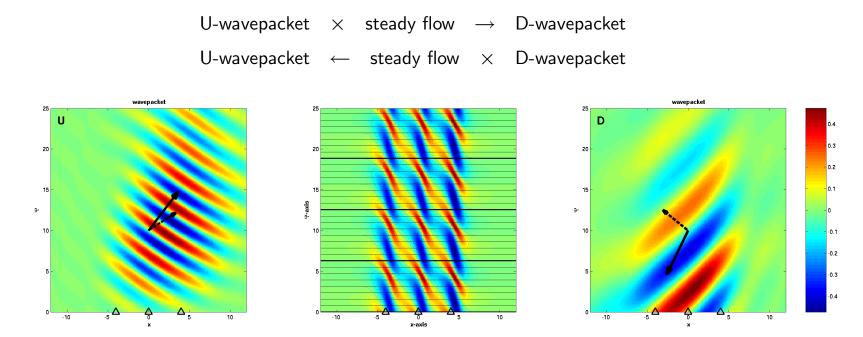
Fourier Wavevectors: steady flow & eigenfunction $(\vec{k}_U + \vec{k}_s = \vec{k}_D)$



Instability via Triad Resonance

4-Wave Interaction

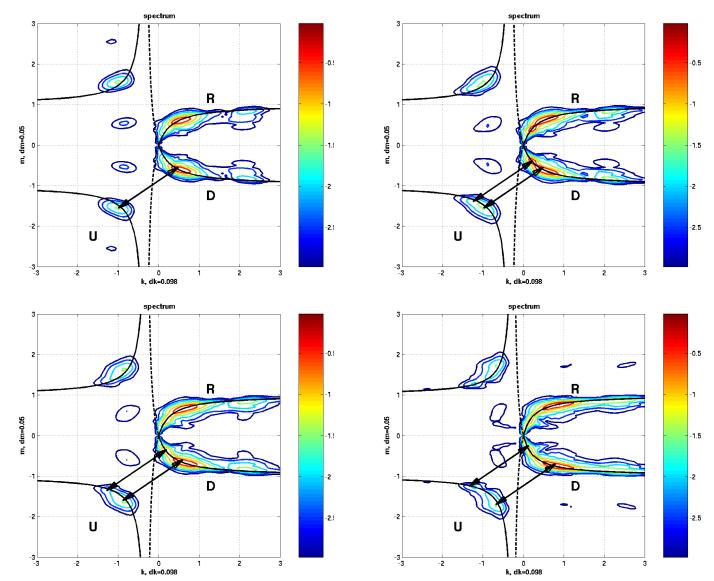
- \triangleright $u(x, \Psi) \& w(x, \Psi)$ are non-constant coefficients for linear disturbances $\tilde{\psi}(x, \Psi) \& \tilde{\theta}(x, \Psi)$
- \triangleright multiplication of Fourier modes \leftrightarrow addition of wavevectors



Resonant Instability

- ▷ occurs if wave generation leads to positive feedback by constructive interference (phase matters)
- \triangleright projection onto U- and D-wavepackets alone gives estimate of λ (within 15%)
- \triangleright depends on height of topography ($\mathcal{A} > 0.35$?)

Multiple Triads



Critical Resonant Triad _

Triad Resonance as Function of ω_0

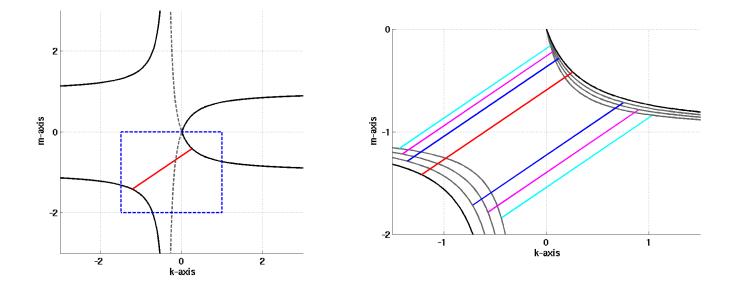
 \triangleright triad resonance condition for (k_U, m_U)

$$\omega_0 = \omega(k_U, m_U) = \omega(k_U + k_s, m_U + 1) = \omega(k_D, m_D)$$

 \triangleright generically 2 solutions of U-D type \rightarrow critical triad occurs for double root!

$$\omega_c = -\frac{k_s}{4}$$
; $k_U = -3k_D = -\frac{3k_s}{4}$; $m_U = 3m_D = -\frac{3}{2}$

 $\,\triangleright\,$ triad resonances only occur for $|\omega_0|<|\omega_c|\,\,\,\rightarrow\,\,$ maximum frequency



▷ is the critical resonant triad responsible for the most unstable mode?

In Closing

Direct Steady 2D Solve

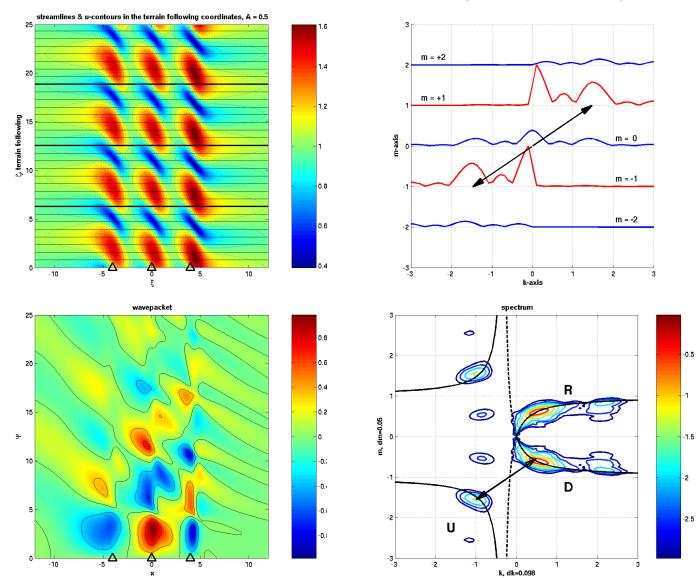
- ▷ non-iterative formulations for exact topographic surface condtion
 - \triangleright Fourier-based 1st-kind solver: near-hydrostatic regime ($0 \le \sigma < 0.5$)
 - \triangleright Green's function-based 2nd-kind solver: hydrostatic regime ($0.3 \le \sigma < 4^+$)
- ▷ overturning criterion to strongly nonhydrostatic regime
- ▷ accurate solutions for linear stability analysis

2D Linear Stability

- ▷ identification of linear instabilities for multiply-peaked terrain
 - benchmark against time-dependent simulations
 - ▷ triad resonance mechanism & critical triad conjecture
 - ▷ height & separation criterion for instability
- ▷ implications for atmospheric wave drag estimates/parametrizations?

A Resonant Triad _

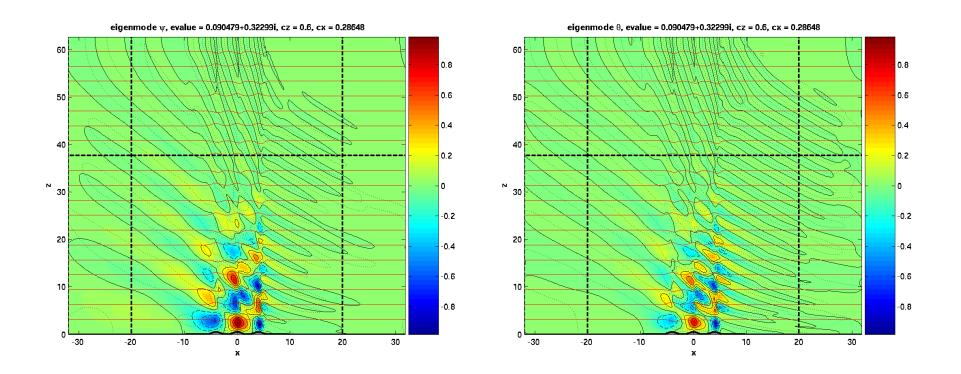
Fourier Wavevectors: Steady Flow & Eigenfunction $(\vec{k}_U + \vec{k}_s = \vec{k}_D)$



Most Unstable Mode ____

Computational Details

- $\triangleright \quad \tilde{\psi}(x,\Psi) \ \& \ \tilde{\theta}(x,\Psi) \ \text{on} \ 384 \times 480 \ \text{grid}$
- \triangleright 2nd-order finite differences: $\Delta x = 1/6 = 0.17$ & $\Delta \Psi = \pi/24 = 0.13$
- ▷ zero on top/bottom, horizontally periodic & damping layers
- \triangleright sparse matrix dimension = 367,872; Krylov subspace dimension = 10



Potential Theory _

$$\mathcal{G}_{xx} + \mathcal{G}_{zz} + \mathcal{G} = \delta(\vec{x} - \vec{\xi})$$

Helmholtz Free-Space Green's Function ($\sigma = 1$)

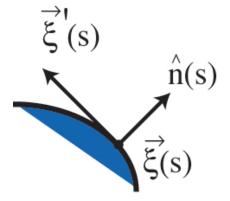
- \triangleright radiating solution for a delta-function source at $\vec{\xi}$: $\mathcal{G}(\vec{x} \vec{\xi})$
- ▷ classical, time-harmonic scattering problem in electromagnetics/acoustics
 - $\,\triangleright\,$ delta-function response in 2D involves Hankel functions: $J_0(r)\pm i\,Y_0(r)$
 - ▷ sign choice determined by far-field radiation condition (implied by time-harmonicity)

Boundary Integral Method

- $ho = \mu(s)$, weighted surface distribution of Green's functions
- $\triangleright \quad \vec{\xi}(s)$, parametrization of surface boundary (clockwise)

$$\psi(\vec{x}) = -\mathcal{A} \int_{\mathcal{S}} \mu(s) \ 2 \ \frac{\partial \mathcal{G}}{\partial n}(\vec{x} - \vec{\xi}(s)) \ ds$$

 $\triangleright \quad$ need topographic Green's function $\mathcal{G}(\vec{x}-\vec{\xi\,})$ & weights $\mu(s)$



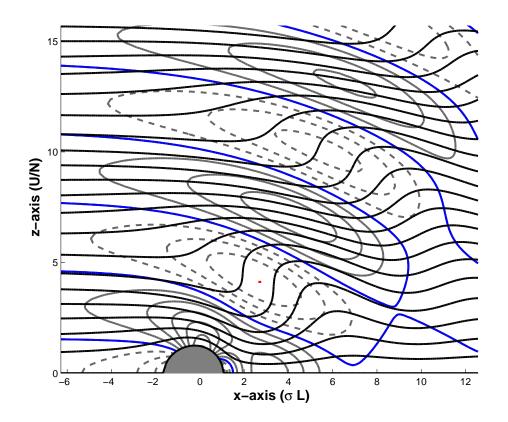
Lyra's Topographic Green's Function _

Delta-Function Topography (linear theory)

 \triangleright from Lyra 1943 (via Alaka 1960) for $\sigma = 1$ as Bessel series

$$\mathcal{G}_{z}(r,\theta) = \frac{1}{2} Y_{1}(r) \sin \theta + \frac{1}{\pi} \sum_{1}^{\infty} \frac{4n}{4n^{2}-1} J_{2n}(r) \sin 2n\theta$$

 \triangleright Lyra's critical overturning solution: $\Psi = z + 8.12 \ {\cal G}_z(r, heta)$



▷ left/right asymmetric Greens function: waves must be downstream

Fredholm Integral Equation of Second-Kind _

Singular Integral Representation

 \triangleright Plemelj formula for surface values, \vec{x}_s

$$\psi(\vec{x}_s) = -\mathcal{A} \ \mu(\vec{x}_s) - \mathcal{A} \int_{\mathcal{S}} \ \mu(s) \ 2 \ \frac{\partial \mathcal{G}}{\partial n}(\vec{x}_s - \vec{\xi}(s)) \ ds$$

 \triangleright surface boundary condition \rightarrow second-kind integral equation for $\mu(\vec{x}_s)$

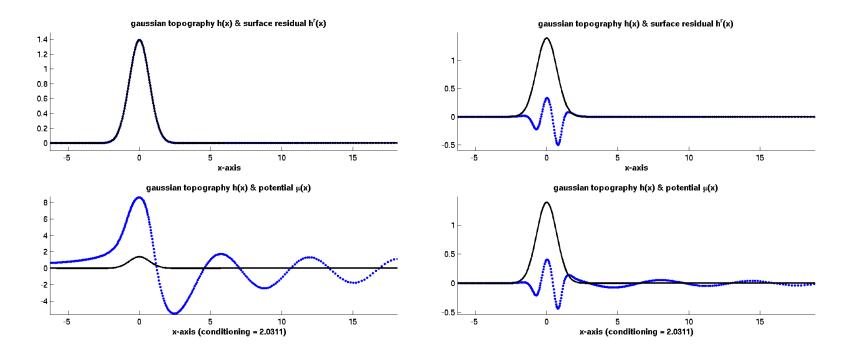
$$\mu(\vec{x}_s) + \int_{\mathcal{S}} \mu(s) \ 2 \ \frac{\partial \mathcal{G}}{\partial n}(\vec{x}_s - \vec{\xi}(s)) \ ds = h(\vec{x}_s)$$

- \triangleright kernel function is continuous at $\vec{x}_s = \vec{\xi}(s) \rightarrow$ curvature contribution
- \triangleright discretized quadrature gives diagonally-dominant matrix \rightarrow well-conditioned inversion
- ▷ amplitude parameter, A, enters through surface parametrization: \$\vec{\xi}(s) = \$\left(\begin{array}{c} x(s) \\ Ah(x(s)) \end{array} \right)\$
 ▷ small A limit: \$\mu(\vec{x}_s) → h(\vec{x}_s)\$\$
- \triangleright nonhydrostatic parameter, σ , handled by rescaling in x (singular as $\sigma \to 0$)

Large Amplitude Solutions _

Slow Decay

 \triangleright boundary integral method limited by downstream wake in $\mu(x)$



▷ use Lyra's analytical solution as first guess

$$\psi(\vec{x}) = \Lambda \mathcal{G}_z(\vec{x}) - \mathcal{A} \int_{\mathcal{S}} \mu(s) \ 2 \ \frac{\partial \mathcal{G}}{\partial n}(\vec{x} - \vec{\xi}(s)) \ ds$$

 \triangleright accurate computation based on surface residual: $h^r(x) = h(x) + \Lambda \, \mathcal{G}_z(x,h(x))$

 \triangleright Λ obtained by good guesswork (4.06 for critical overturning)

Long 1955: Theory & Experiment -

$$\sigma^2 \psi_{xx} + \psi_{zz} + \psi = 0$$

Finite Amplitude Topography

 \triangleright on streamline boundaries: $\psi = \mathcal{A}h(x) + \psi(x, \mathcal{A}h(x)) = \text{constant}$

