
A Few Surprises in 2D Nonlinear Flow over Topography

. computing Long’s theory with exact surface boundary conditions
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Revisiting Long’s 1953 Theory

Two-Dimensional Primitive Equations

. inviscid, incompressible, Boussinesq buoyancy

ux + wz = 0

Du

Dt
= −φx

δ2
Dw

Dt
− θ = −φz

Dθ

Dt
+ w = 0

. nonhydrostatic parameter (δ = U/NL) & height scale (A = NH/U)

. potential temperature (θ) & geopotential (φ)

Steady Streamfunction: ψ(x, z) = z + ψ̃(x, z)

. uniform upstream wind U & constant stratification N

. exact reduction to linear Helmholtz equation for disturbance streamfunction

δ2 ψ̃xx + ψ̃zz + ψ̃ = 0

. topographic surface at z = Ah(x) & streamline condition → ψ(x,Ah(x)) = 0

. radiation/decay BCs aloft
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Long 1955: Theory & Experiment

δ2 ψ̃xx + ψ̃zz + ψ̃ = 0

Finite Amplitude Topography

. on streamline boundaries: ψ = Ah(x) + ψ̃(x,Ah(x)) = constant
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Linearized Surface Condition

ψ̃(x, z) = −A
2π

∫ +∞

−∞
ĥ(k) ei(kx+m(k)z) dk

Fourier Solution (for small A)

. boundary at z = 0 & linearized topographic condition → Ah(x) + ψ̃(x, 0) = 0

. aloft conditions via vertical mode number (δ2k2 +m2 = 1)

m(k) =

(
sign(k)

p
1− δ2k2 for |δk| ≤ 1 (long scale radiation)

i
p
δ2k2 − 1 for |δk| ≥ 1 (short scale decay)
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General Helmholtz Solution

ψ̃(x, z) = −A
∫ +∞

−∞
ĉ(k) ei(kx+m(k)z) dk

Fourier Representation

. satisfies aloft conditions (δ2k2 +m2 = 1)

. surface at z = Ah(x) & exact topographic condition → Ah(x) + ψ̃(x,Ah(x)) = 0

h(x) −
∫ +∞

−∞
ĉ(k) ei(kx+m(k)Ah(x)) dk = 0

Fredholm Integral Equation of the First-Kind

. linearity: action of integral operator is linear in unknown coefficients ĉ(k)

. numerical solution equivalent to matrix inversion

. velocities from spectral differentiation: u = ψz & w = −ψx

. no need to compute Fourier transform: c(x) → effective topography
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Direct Steady Solve

h(x) −
∫ +∞

−∞
ĉ(k) ei(kx+m(k)Ah(x)) dk = 0

Numerical Discretization

. collocation points: {x1 . . . xα . . . xN} & N knowns: hα = h(xα)

. wavenumbers: {k1 . . . kβ . . . kN} & N unknowns: ĉβ ≈ ĉ(kβ)

. approximate integral at each xα by quadrature (trapezoidal rule) over β = 1 . . . N

hα −
N∑
β=1

ĉβ ei(kβxα+m(kβ)Ah(xα)) wβ ∆k︸ ︷︷ ︸
Kα,β

= 0

Matrix Inversion

. N linear equations in N unknowns: ~(hα) =
ˆ
Kα,β

˜ ~`
cβ

´
. m(k) is discontinuous at k = 0 → half-line integrals

. full matrix K can be ill-conditioned → catastrophic loss of precision as N increases
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Numerical Implementation

Fourier Conditioning

. A = 0 recovers linear theory & discrete Fourier transform is well-conditioned

. equi-spaced discretizations with ∆k∆x = 2π/N is essential
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. Lilly/Klemp 1979, hydrostatic critical overturning: N = 256 → 1.1s to solve & 2.0s to plot

. Fourier representation allows periodic wrap-around → large computational domains
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A Nonhydrostatic Example

Laprise & Peltier, 1988

. predictor/corrector to obtain effective topography c(x) → typically 50 iterations
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. large amplitude A = 1.0 & moderately nonhydrostatic δ = 0.5

. N = 2056, x∞ = 256: 284s to solve, 89s to plot, log-condition number = 5.75
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A Strongly Nonhydrostatic Example

δ = 1.0 & A = 0.5

. u-wind maximum shifts towards the summit as nonhydrostatic effect increases
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Mountain vs Valley

δ = 0.3 & A = ±0.96

. both cases near critical overturning

. very little asymmetry in overall magnitude of response (unlike rotating case)
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Extended Topography

δ = 0.5 & A = ±0.5

. largest response associated with downslope

. slightly more wind in valley case: 0.32 < u+ < 1.77 vs 0.26 < u− < 1.82
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Lyra’s Topographic Greens Function

Delta Function Topography

. from Lyra 1940 & 1943 (via Alaka 1960) for δ = 1: Bessel series

ψ̃(r, θ) =
1

2
Y1(r) sin θ +

1

π

∞X
1

4n

4n2 − 1
J2n(r) sin 2nθ

. critical overturning for delta strength ≈ 4.06

−6 −4 −2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

 x−axis (mtn width units)

 z
−a

xi
s 

(w
av

e 
he

ig
ht

 u
ni

ts
)

 Lyra’s topographic greens function
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Topographic Boundary Conditions

Direct Computation

. consistent with spectral radiation condition

. elementary formulation for non-iterative solve

. Long’s theory: hydrostatic & nonhydrostatic

. Fredholm first-kind integral equation is generally ill-conditioned

→ possible resolution via Lyra’s greens function

. Fourier representation allows for wrap-around of waves

. open issues in stability of Long’s solutions?
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