A Uniform PV Framework for Balanced Vortex Dynamics

- ▷ balanced models for a well-mixed troposphere
- ▷ tropopause- & surface-driven vortex dynamics

- ∇ ∇ ∇
 - Greg Hakim (University of Washington)

Chris Snyder (NCAR Boulder)

Dave Muraki (Simon Fraser University)

Midla	titude Vortex Dynamics: Some Questions
What i	s the mechanism behind the observed asymmetry of cyclones & anticyclones?
∇	localized, intense cyclones versus broad, weak anticyclones
\bigtriangledown	similar asymmetry observed for small-scale, upper-level vorticity disturbances; Hakim (2000)
What a	are the reasons for the differences in asymmetries seen in vortex simulations?
∇	previous simulations favoring organization of anticyclonic vorticity:
	ightarrow rotating shallow water: Polvani, McWilliams etal. (1994)
	ightarrow 3D periodic balance equations: Yavneh, McWilliams etal. (1994)
\bigtriangledown	finite Rossby number effects favor organization of cyclones:
	$ ightarrow$ surface potential temperature dynamics (sQG $^{+1}$); Muraki, Hakim, Snyder (2002)
What i	is the rôle of the tropopause in the organization of upper-level vorticity?
How d	oes the depth of the troposphere influence vortex organization & dynamics?
\bigtriangledown	with or without baroclinic instability, or in polar regions without strong jetstream

Vertical Structure of the Troposphere -

Zonal Mean PV & Geopotential

- ▷ contours of zonal mean PV with latitude and height
- ∇ vertical profiles of Fourier amplitude of mean geopotential with zonal wavenumber $m{k}$

 ∇ well-mixed PV in troposphere; disturbance amplitudes peak at the tropopause

Surface Quasigeostrophy -

Quasigeostrophic Dynamics with Uniform PV

- ▷ baroclinic instability & Eady waves; Hoskins (1975/1976)
- ▷ wave interactions & turbulence; Blumen (1978)
- spectral turbulence; Pierrehumbert etal. (1994)
- ▷ dynamics & decaying turbulence; Held etal. (1995)

Dynamics of Surface Potential Temperature ($heta^s$)

- ∇ rigid surface at z = 0: surface potential temperature $\theta^s(x, y; t) = \theta(x, y, 0; t)$
- \triangleright geostrophy: $v = \Phi_x$; $u = -\Phi_y$; $\theta = \Phi_z$
- ▷ inversion of uniform (zero) PV:

$$abla^2 \Phi = q = 0$$
 with surface BC $\Phi_z(x, y, 0; t) = \theta^s(x, y; t)$

▷ surface advection:

$$\theta_t^s + u^s \, \theta_x^s + v^s \, \theta_y^s = 0$$

- dynamics are driven solely by surface advection
- rôle of PV inversion is to determine surface winds $(u^s,\,v^s)$ from $heta^s$
- ightarrow finite Rossby number corrections to surface winds, sQG $^{+1}$; Muraki, Hakim, Snyder (2002)

Tropopause as an Upper-Level Interface -

A Two-PV Fluid Model for the Tropopause

- ∇ troposphere (low uniform PV) & stratosphere (high uniform PV)
- ∇ tropopause as dynamic interface between two-sQG fluids
- \rightarrow tropopause Eady wave; Rivest etal. (1992)
- ightarrow tropopause dynamics; Juckes (1994)
- ∇ finite Rossby number corrections to Eady edge wave (sQG $^{+1}$); Muraki, Hakim (2001)
- ightarrow ratio of stratospheric-to-tropospheric Burger numbers, $B^s/B^t=4$

 ∇ disturbances decay away from tropopause (infinite fluid above & below) cyclonic: intense, localized downward deflection & anticyclonic: weak, broad upward deflection

 ∇

с

A Simple Model for the Upper-Level Troposphere sQG & The Rigid Tropopause Limit. Organization of Vortices ∇ ∇ ∇ ∇ limit as $B^s/B^t \to \infty$: basic framework for understanding balanced c finite Rossby number corrections produce cyc freely decaying turbulence from random initia ightarrow sQG theory for troposphere ($z \leq 0$) only ightarrow rigid tropopause boundary, $w^s ightarrow 0$ 4 -20 0 20 4 sQG⁺¹ Theta (t=200) 8 ģ 44 × -20 -20 Theta (t=0) 0 × o 20 20 N 40 20 20 sQG Theta (t=1000) sQG⁺¹ Theta (t=200) ×° ×o 20 20

sQG⁺¹ Theta (t=1000)

sQG Theta (t=1000)

σ

Vertical Structure of sQG
Inversion of Uniform PV
• for sQG below a rigid tropopause
$$(z \le 0)$$

• Fourier solution of the sQG streamfunction
 $\Phi(x, y, z; t) = \int_{-\infty}^{+\infty} \hat{\sigma}^t(k, l; t) \left\{ \frac{e^{mz}}{m} \right\} e^{i(kx+iy)} dk dl$
 \rightarrow Fourier transform of surface (tropopause) potential temperature: $\hat{\sigma}^t(k, l; t)$
 \rightarrow inversion of Laplacian: $m = \sqrt{k^2 + l^2}$
• each Fourier mode decays exponentially as $z \rightarrow -\infty$
 \rightarrow larger scales extend deeper into troposphere (smaller m)
 \rightarrow small scales are more localized to tropopause (larger m)
Computational Efficiency of sQG Fourier Inversion
• only 2D FFTs required to evolve 3D tropospheric flow
• finite Rossby number corrections also computed with 2D efficiencies

Uniform PV Thinking -

sQG Advantages for Understanding Dynamics

- ∇ rotating (f-plane), stratified fluid near an interface or surface
- ▷ balanced dynamics in zero Rossby number limit
- ∇ more faithful to continuously stratification than (barotropic) shallow water models
- extension to finite Rossby number corrections

Dynamics Beyond sQG

- ∇ finite tropospheric depth: passive bottom surface with $\theta^b=0$
- ∇ two surfaces (2sQG): active top and bottom surfaces θ^t & θ^b
- ightarrow barotropic alignment of top & bottom vortices at larger scales
- \rightarrow baroclinic instability when background shear included
- ∇ tropopause: stratospheric fluid above, moving interface at $z = \eta(x, y; t)$
- ∇ free-surface: unstratified fluid above, moving interface at $z = \eta(x, y; t)$
- \rightarrow continuously stratified analog to shallow water

Finite Tropospheric Depth Dynamics
Inversion of Uniform PV

$$rigid tropopause at $z = H$, isentropic ground at $z = 0$

$$Fourier solution of the 3D streamfunction $(m = \sqrt{k^2 + l^2})$

$$\Phi(x, y, z; t) = \int_{-\infty}^{+\infty} \delta^t(k, l; t) \left\{ \frac{\cosh mz}{m \sinh mH} \right\} e^{i(kx+ly)} dk dl$$

$$Fourier transform of tropopause potential temperature: \hat{\theta}^t(k, l; t)$$

$$Fourier transform of surface (z = H) streamfunction, \hat{\Phi}^t$$

$$\hat{\Phi}^t(x, y; t) = \hat{\theta}^t(k, l; t) \left\{ \frac{1}{m \tanh mH} \right\} \sim \left\{ \begin{array}{c} \frac{\partial t}{m} \\ \frac{\partial t}{m^2 H} \\ mH \text{ large} \end{array} \right.$$

$$+ \text{ horizontal scales small relative to depth invert as sQG (mH large) \\ + \text{ large horizontal scales large invert as barotropic vorticity (mH small) \\ on the large scales, $-\theta^t/H$ evolves like barotropic vorticity dynamics$$$$$$

Two Surface Dynamics -

2sQG Inversion of Uniform PV

- hdow rigid ground/tropopause surfaces at z = 0, H
- ∇ Fourier solution of the 3D streamfunction ($m=\sqrt{k^2+l^2})$

$$\begin{split} \Phi(x,y,z;t) &= \int_{-\infty}^{+\infty} \hat{\theta}^t(k,l;t) \left\{ \frac{\cosh mz}{m \sinh mH} \right\} & e^{i(kx+ly)} \, dk \, dl \\ &+ \int_{-\infty}^{+\infty} \hat{\theta}^b(k,l;t) \left\{ \frac{\cosh m(H-z)}{m \sinh mH} \right\} e^{i(kx+ly)} \, dk \, dl \end{split}$$

- \rightarrow Fourier transform of surface potential temperatures: $\hat{ heta}^t(k,l;t)$ & $\hat{ heta}^b(k,l;t)$
- ∇ $(heta^b+ heta^t)/2H$ dynamically acts like the baroclinic flow component
- ∇ $\zeta = (heta^b - heta^t)/2H$ dynamically acts like barotropic vorticity

Large-Scale Dynamics act Barotropically

 ∇ t, b-mean streamfunction $(ar{\Phi})$ over small mH wavenumbers:

$$\bar{\Phi}(x,y;t) \approx \int_{-\infty}^{+\infty} \hat{\zeta}(k,l;t) \left\{ \frac{-1}{m^2} \right\} e^{i(kx+ly)} dk dl$$

 ∇ advection of barotropic component by mean wind: $\zeta_t + J(\bar{\Phi},\zeta) = 0$

Two-Surface Edge Wave

Finite Rossby Number Corrections

- ∇ nonlinear edge wave solution with simple Eady shear, correct to $O(\mathcal{R})$
- ∇ square wave k=l=1, vertical mode number $m=\sqrt{k^2+l^2}=2.5$
- hdow beyond short-wave stability criterion: $m>m_cpprox 2.399$
- \triangleright upper-level cyclone asymmetry for $\mathcal{R}=0.1$
- nonlinear wavespeed same as neutral linear edge waves

Free-Surface Dynamics -

Uniform PV Inversion (with R Tulloch)

- $\triangleright \quad \text{moving free-surface at } z = \mathcal{R}h(x,y;t)$
- ∇ total surface potential temperature, $\theta^s(x, y; t) = h(x, y; t) + \theta(x, y, \mathcal{R}h(x, t; t), t)$
- ∇ surface BCs: kinematic conditions with continuity of potential temperature and pressure
- ∇ Fourier solution of the 3D streamfunction $(m=\sqrt{k^2+l^2})$

$$\Phi(x,y,z;t) = \int_{-\infty}^{+\infty} \hat{\theta}^s(k,l;t) \left\{ \frac{1}{m+\sigma^{-1}} \right\} e^{i(kx+ly)} dk dl$$

ightarrow surface value of potential temperature is $-\sigma$

 ∇ surface anticyclones: sQG^{+1} versus $fsQG^{+1}$ (slower rotation, less axisymmetrization)

16

Summary —

▷ stratified shallow water dynamics