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SPECTRUM OF RESONANT INSTABILITIES
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FIGURE 1: Spectrum of Resonant Instabilities: DNS (Lin2000) vs

Floquet Unravelled Spectrum (djm & ybb)

EQUATIONS FOR A STRATIFIED FLUID

2D incompressible Kuler with Boussinesq Buoyancy
& Constant Stratification
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e Buoyancy b(x, z,t) and vorticity n(z, z, t)
e 2D velocity (x, z components): U = (u, w)
Streamfunction Y(x, z,t): u =1v,, w=—VYy

e Advection from Jacobian:

J(f,0) = [do v

fo o, | T W Tl

e Vorticity: n = 1, + 52%;5,;;
Hydrostatic limit: © — 0 ; Laplacian: 0 — 1

Streamfunction Formulation

o+ by + Jnw) = 0
bt — Y +  JbY) = 0
Vyy + 52¢xaz — T

Exact Nonlinear Wave Solutions
(0
b

e Primay wavenumbers: (K, M)

<_[S(2> 2esin(Kx + Mz — Qt)

K2
M? + 0’ K?

e Linear dispersion relation: QQ(K M) =

Linearized Equations

M+ by — 2eJ (O + (K2 /Q) , sin(Kx +Mz —QOt)

Ob+ K4 , sin(Kz +Mz —Qt)) = 0
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e Goal: to characterize the linear instabilities of a primary wave

e [.incarize w.r.t the nonlinear wave
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e Linear PDEs with periodic, non-constant coeflicients

e A problem for Floquet Theory

INSTABILITIES VIA FLOQUET THEORY

responding physical wave resonance.

bilities given physical wave resonance t

Mathieu Equation

i+ (a+ esint)u = 0

UNRAVELLING THE RESONANT INSTABILITIES OF A STRATIFIED GRAVITY WAVE

BC, CANADA

e Artificial periodicity due to index shifts — multiple counting

\

e Resolution: to associate w(k, m) with the instabilities given by its cor-

o QUESTION 1. Which w’s from computation correspond to the insta-

heory 7

PERTURBATION ANALYSIS

e Complex eigenvalues/instabilities arise from multiple root perturbation

e Resonance trace: w(k,m)+ nw(K, M) =w(k+nK,m+nM)

FIGURE 2: Spectrum of Mathieu Instabilities — where multiple roots live on.

e Floquet theory:
Triad (n = 1) and Quartet

(n = 2) Resonance

downward propagating triad resonant interactions
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o w(a;e), Floquet exponent with Im w > 0 — instability.
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Floquet Fourier Analysis for PDEs

e Product of exponential & co-periodic Fourier series

0\ (1<
( l;) _ ez(karmz—wt) < Zﬁnezn(KerMz—Qt)
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e Secondary /perturbed wavenumbers: (k, m)
e Floquet exponent Im w(k, m;e) > 0 — instability

e Hill’s infinite matrix & generalized eigenvalue problem

stable/unstable triad resonant traces

FIGURE 4: Triad resonant traces identified by corresponding resonance (color)

o Upward and downward cy(k,m) ; Active and inert resonant traces

e ANSWER 1. By small € pertubation, w™(k, m;€) ~ £Q(k, m)

stable/unstable quartet resonant traces
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e 2 x 2 real blocks: My, (k,m); Sp(k, m)symmetric; A,(k, m) diagonal
o Truncate —N < n < N & compute 4N + 2 eigenvalues {w(k, m;¢€)}

FIGURE 5: Unstable triad/quartet resonat traces via perturbation

e Choose primary wavenumbers (K, M) = (1,1);
finite wave amplitude: ¢ = 0.1;  hydrostatic: 0 = 0
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FIGURE 3: Raw Floquet spectrum vs unravelled Floquet spectrum

unravelled spectrum , & =0
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FIGURE 6: Spectrum Im w™

unravelled spectrum up cg, 0 =0

vs frequency Re w™
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FIGURE 8: Spectrum vs frequency for the upward/downward ¢, with 0 = 1

e Laplacian: 0 = 1; Primary wavenumbers: (K, M) = (17,10).

e Spectrum of resonant instabilities (Im (w(k,m))) and frequency of res-
onant instabilities (Re (w(k,m)))

e Resonant traces correspond to jumps and branch-cuts in the Re

(w(k,m)) figure
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FIGURE 9: Correspondence between resonanting wave modes

FUTURE WORK

e Using Floquet spectral theory, to show in frequency plot (Re w), reso-
nant traces are continuous along instabilities and have branch-cuts along
stabilities.

e To fully understand the wave resonance structure in the unravelled spec-
trum.
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