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ABSTRACT

Quasigeostrophic theory is an approximation of the primitive equations in which the dynamics of geostroph-
ically balanced motions are described by the advection of potential vorticity. Quasigeostrophy also represents
a leading-order theory in the sense that it is derivable from the full primitive equations in the asymptotic limit
of zero Rossby number. Building upon quasigeostrophy, and the centrality of potential vorticity, a systematic
asymptotic framework is developed from which balanced, next-order corrections in Rossby number are obtained.
The simplicity of the approach is illustrated by explicit construction of the next-order corrections to a finite-
amplitude Eady edge wave.

1. Introduction

Much of current understanding of midlatitude dynam-
ics in both the atmosphere and the ocean arises from
the quasigeostrophic theory first proposed by Charney
(1948). Quasigeostrophy (QG) can be derived as the
leading-order theory in an expansion of the primitive
equations (PEs) for small Rossby number (Pedlosky
1987), which is defined as e 5 V/fL, where V and L are
characteristic scales for horizontal velocity and length,
and f is the Coriolis parameter. Quasigeostrophy is con-
ceptually simple and is also qualitatively successful
when applied to atmospheric and oceanic flows, partic-
ularly in diagnostic applications. [Interpretations of nu-
merous atmospheric phenomena in terms of QG and
further references are given in Bluestein (1992).] There
are, however, known deficiencies, both quantitative and
qualitative, of QG solutions (see, e.g., Mudrick 1974).

Since QG is the leading-order theory in an asymptotic
expansion, it is natural to ask whether that expansion
could be extended through additional orders in e, and
whether the aforementioned deficiencies of QG would
thereby be reduced. Thus, our goal is to extend system-
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atically, and to produce solutions of, the asymptotic ex-
pansion of the PE through additional orders in e beyond
QG. We are motivated in large part by a desire to refine
the dynamical insight already available from QG, but
we also seek a framework in which to address quanti-
tatively more fundamental questions relating to the na-
ture of balanced flows and their coupling to inertia-
gravity waves.

Allen (1993) presents one approach to systematically
extending QG. With pressure chosen as the distin-
guished variable in the theory (i.e., the variable required
for initialization and from which all other variables may
be diagnosed), an iterative solution technique is devel-
oped that yields an additional order of accuracy in e per
iteration. Vallis [1996; see also Warn et al. (1995) and
Bokhove (1997)] proposes a different strategy in which
potential vorticity is distinguished and dynamics is de-
rived from its material conservation.

Our approach, which is similar to that of Vallis, builds
on two basic elements of QG that lead to its exceptional
simplicity and wide applicability: the material conser-
vation of an analog of Ertel potential vorticity, and the
simple relation between the flow variables and a single
scalar potential (the geostrophic streamfunction or geo-
potential height). The key step in our approach (given
in section 3) is to reformulate the PE by first including
the conservation of potential vorticity as a prognostic
equation, or equivalently, choosing potential vorticity
as a distinguished variable; and second, introducing the
change of dependent variables,
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y F F 2 G     x z
    
2u 5 =F 1 = 3 G 5 F 1 F , (1)     y z    

u 0 F 1 G 2 F     z x y

where (u, y) is the horizontal velocity and u is potential
temperature. (Nondimensionalizations implicit in the
above are given in section 2.) The equations that result
from this substitution into the PE will be referred to as
the QG1 reformulation.

As will be shown in sections 3 and 4a, the QG1

equations have the appealing characteristics that, for
slow motions whose timescale is O(e21 f 21), (i) only a
single time derivative appears at leading order, that of
F or potential vorticity; (ii) QG follows directly from
QG1 by setting e 5 0; and (iii) subsequent asymptotic
corrections derive from a straightforward expansion of
F, F, and G in powers of e. In the opposite limit of fast
motions whose timescale is O( f 21), it is the time de-
rivatives of F and G that appear at leading order of
QG1, and the inertia-gravity wave dispersion relation
is recovered. Boundary conditions also require careful
attention because of the change of dependent variables;
we specify a well-posed initial boundary value problem
for the expansion to next order beyond QG.

While this asymptotic framework is an important re-
sult of this paper, it is also only a first step, since solving
equation sets that are accurate beyond QG is often more
difficult than deriving them. Our purpose is thus not
merely to put forward (yet another) approximation to
the PE, but to find equation sets for which solutions are
accessible both analytically and computationally and to
evaluate those solutions relative to the PE. To that end,
we present in section 5a an analytic solution for a finite-
amplitude surface edge wave that is accurate through
next order in e. This solution illustrates the well-posed-
ness of boundary conditions and the simplicity of the
solution procedure for the resulting equations. More-
over, a subsequent paper will discuss the numerical im-
plementation of this asymptotic framework and will pre-
sent solutions for the development of a baroclinic wave
on a jet, following Hoskins and West (1979). For e 5
0.3 (based on the jet speed), the numerical solutions
improve the qualitative deficiencies of QG solutions and
have significantly increased quantitative accuracy at
nondimensional times that are roughly O(e21).

The approach presented here has certain desirable
properties. First, it builds upon the foundation of QG
through a natural extension of its mathematical struc-
ture. To the extent that one is interested in improving
the dynamical insight available from QG (which is ar-
guably most of midlatitude dynamics), this is the ob-
vious step. Second, the scheme is computationally and
analytically straightforward; in its simplest form, only
advection of PV and inversion of Laplacians are re-
quired. Because it builds upon QG, the scheme is easily
implemented given an existing QG numerical model.
Finally, the present approach suggests a clean frame-

work for examining how balanced flows interact with
gravity waves.

In section 2, the nondimensionalized PEs are pre-
sented and QG is discussed from the perspective of a
reduced model for balanced dynamics. Section 3 then
presents a natural reformulation of the PE that is based
on the change of variables given in (1), which produces
QG1. Unlike the original PE, this reformulation reflects
the structure of QG in the sense that QG can be obtained
directly by setting e 5 0 in the QG1 equations. The
equations for the next-order corrections beyond QG,
referred to as QG11, are derived in section 4. The well-
posedness of the QG11 equation set is illustrated in sec-
tion 5 by the analytical construction of the corrections
to a finite-amplitude Eady edge wave. In the concluding
section, we summarize and discuss further the relation
of the present approach to existing balanced models.

2. Primitive equations and the QG approximation

a. Primitive equations

We take as our starting point equations for an f -plane
geophysical fluid system that is adiabatic, inviscid,
Boussinesq, and hydrostatic (Gent and McWilliams
1983b):

u 1 y 1 w 5 0x y z

TD u 2y f x1 f 5 2
T1 2 1 2 1 2Dt y u f y

g
T Tf 5 uz u0

TDu
5 0, (2)

Dt

where

D ] ] ] ]
[ 1 u 1 y 1 w (3)

Dt ]t ]x ]y ]z

denotes the usual advective derivative. In the atmo-
sphere u, y , and w represent the wind velocities, and uT

represents potential temperature. Although the quanti-
ties f T and z will be referred to as pressure and vertical
height, in a strict atmospheric sense, they represent geo-
potential height and a modified pressure coordinate
(Hoskins and Bretherton 1972). The coefficients f, g,
and u0 are the Coriolis parameter, the gravitational con-
stant, and a reference potential temperature.

Reference profiles of uT and f T are defined by a con-
stant, horizontally uniform stratification,

g 1
M 2 M 2 2u [ N z, f [ N z , (4)

u 20

where N is the (constant) Brunt–Väisälä frequency. The
primitive equations as written below will model distur-
bance flows to this continuously stratified atmosphere.
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Nondimensionalization of the disturbance equations
is based upon typical midlatitude synoptic scales where
the Burger number (B) is taken to be unity, and the
Rossby number (e) is assumed small where

2NH V
B [ 5 1, e [ K 1 (5)1 2fL fL

relates the scales for the height H, horizontal distance
L, and horizontal velocity V. The primitive variables are
scaled by

x, y ; L z ; H
21t ; (e f )

2u, y ; V w ; e fH
T M 2 2f 5 f 2 f ; eN H

g g
T M 2u 5 (u 2 u ) ; eN H. (6)

u u0 0

These scaling assumptions give the nondimensional PE
for continuity,

ux 1 y y 1 ewz 5 0; (7)

horizontal momentum and hydrostatic balance,

Du
e 2 y 5 2fx1 2Dt

Dy
e 1 u 5 2fy1 2Dt

0 5 2f 1 u; (8)z

temperature advection,

Du
1 w 5 0; (9)1 2Dt

and material derivative,

D ] ] ] ]
[ 1 u 1 y 1 ew . (10)

Dt ]t ]x ]y ]z

Because of the scaling for w in (6), which was chosen
in anticipation of QG, the vertical velocity does not enter
at leading order in either (7) or (10).

Boundary conditions are also crucial; they must, for
example, be implemented correctly for asymptotically
consistent balance models (Gent and McWilliams
1983a). The simplest geophysically relevant geometry
is a horizontally periodic cell bounded by rigid hori-
zontal surfaces at zs 5 0, 1. The boundary conditions
are zero normal flow (w 5 0) on the bounding surfaces
and horizontal periodicity. This simple geometry will
be assumed in what follows; the additional complex-
ities of horizontally bounded domains (ocean basins)
and weak surface topography are deferred to the ap-
pendixes.

The primitive equations contain two exact conser-
vation laws,

TDu DQ
5 0, 5 0, (11)

Dt Dt

where the first is total (nondimensionalized) potential tem-
perature uT 5 z 1 eu, and the second is the Ertel potential
vorticity Q. In the hydrostatic limit, the definition of the
Ertel potential vorticity contains only the horizontal winds

u 
 

u [ y (12) H  
0 

so that
TQ [ (k 1 e= 3 u ) · =uH

T5 = · [u (k 1 e= 3 u )]. (13)H

In the midlatitude scaling, the uniform stratification in
uT imparts a nominal unity value to potential vorticity,
while the dynamically active contribution is of smaller
order in Rossby number. This motivates the introduction
of a disturbance potential vorticity

q [ (y 2 u 1 u )x y z

1 e[(y 2 u )u 2 y u 1 u u ] (14)x y z z x z y

so that Q 5 1 1 eq. Unless specified otherwise, the
term potential vorticity (PV) will hereafter be used in
conjunction with this disturbance value.

An important consequence of the exact advection of
PV is that its volume integral (in finite, or periodic,
domains) is a conserved quantity of the PE dynamics.
Since Q is a perfect divergence derived from primitive
variables, a consistency requirement can be derived
from the application of a Greens identity to the volume
integral of (13). For the periodic-cell geometry,

q dx dy dzEEE
z515 [u 1 eu(y 2 u )] dx dy. (15))EE x y z50

Within the context of the PE model, this integral is a
consistency property that q inherits from the flow; in PV-
based balance models, this integral becomes a solvability
requirement in the determination of a balanced state.

b. QG revisited

We next present the QG approximation to the PE (7)–
(9) from a perspective that identifies the basic mathe-
matical structure underlying the QG balance and dy-
namics. This structure will suggest a natural reformu-
lation of the PE, referred to as QG1, which then serves
as the starting point for the systematic expansion in
Rossby number of section 3.

Because the notion of ‘‘balance’’ will appear frequently
in what follows, it is worth fixing terminology before pro-
ceeding. As a system of partial differential equations, the
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PEs are third order in time so that three initial conditions
(for instance, u, y, and u) are required to determine the
dynamics. The necessity for three initial conditions is con-
sistent with the fact that, when linearized about a resting
basic state, the PEs support three independent modes—a
Rossby wave and two inertia-gravity waves. When QG is
formally valid (e K 1 and t K 1/e), there is a separation
of timescales between the slow Rossby wave and the fast
gravity waves. In the following, ‘‘balanced flows’’ are
simply taken as asymptotic solutions of the PE that are
devoid of gravity waves up to the order of the expansion;
and ‘‘balanced models’’ represent reductions of the PE
that describe only these asymptotic solutions and have only
a single independent time derivative. Balanced models
consist (implicitly, at least) of two elements (Warn et al.
1995): (a) ‘‘balance relations’’ defining conditions free of
(fast) gravity waves and (b) ‘‘balanced dynamics’’ de-
scribing the (slow) evolution in time of the balanced flow.
We will adhere to the above distinction in our exposition
of QG, QG1, and QG11. Further discussion of the notion
of balance can be found in Warn et al. (1995) (M. E.
McIntyre and W. A. Norton 1994, personal communica-
tion).

Quasigeostrophy is the leading-order (in e) approxi-
mation to the PE; its balance relations are obtained by
setting e 5 0 in the definition of PV (14) and the mo-
mentum equations (8):

(a1) PV and surface temperature,

¹2f 0 5 q, ( )s 5 us; and0f z (16)

(a2) primitive variables,
0 0y 5 f x

0 02u 5 f y

0 0u 5 f , (17)z

where ¹2 denotes a three-dimensional Laplacian. The
superscript 0 indicates the leading-order QG values, and
the superscript s in (16) denotes evaluation at either the
top or bottom horizontal surfaces (zs 5 0, 1).

The QG dynamics follows from the material conser-
vation of PV [(11)] and us, and from the truncation of
the material derivative to advection only by the QG
horizontal winds (u0, y 0):

(b1) QG advection,

] ] ]
0 0 0D [ 1 u 1 y ; and (18)

]t ]x ]y

(b2) advection dynamics,

D 0q 5 0, (D 0u)s 5 0. (19)

The conservation of us by the horizontal flow follows
from the requirement that ws 5 0.

Thus, QG has the following interrelated properties.
First, knowledge of the PV and surface potential tem-
perature determine, through (a1), the pressure f 0 and,

through (a2), the other primitive variables. Of particular
significance to our development of QG1 is the identi-
fication of (y 0, 2u0, u0) with the three-dimensional gra-
dient f 0. Second, the fundamental dynamical variables
are PV and surface potential temperature, in that their
conservation determines the evolution of the flow.
Third, QG possesses only a single interior time deriv-
ative (q) and, more importantly, only a single uncon-
strained initial condition (f 0). The importance of the
first two properties has been argued eloquently by Hos-
kins et al. (1985), and that of the third property by Warn
et al. (1995). All of these aspects of the QG scheme
will be incorporated into the subsequent reformulation
and asymptotic expansion of the PE.

Quasigeostrophy also inherits a version of the PE
integral property [(15)]. In (a1), a linear Poisson prob-
lem must be solved for f 0 given q and us; a solution
exists only when

z51q dx dy dz 5 u dx dy. (20))EEE EE z50

Thus, while every pressure f 0 state determines a unique
q and us, the reverse is not necessarily true. It is im-
portant to understand that this solvability condition is
not specifically a consequence of the QG approximation,
nor of the assumption of balance; but rather that, as a
leading-order solution to the PE model, the QG solution
must conform to the leading-order part of (15).

Although the vertical velocity w0 completely decou-
ples from the QG balance model, it can be included
among the balance relations (a2). Note that w can be
obtained either by diagnosing the time-derivative of
temperature [(9)] or by inverting the ‘‘omega equation’’
(Gill 1982)

¹2w0 5 2[J( , )]x 1 2[J( , )]y,0 0 0 0f f f fz x z y (21)

where the J( f, g) [ ( f xgy 2 f ygx) denotes the Jacobian
derivative. Boundary conditions of ws 5 0 and lateral
periodicity are sufficient to permit inversion for w from
(21).

As noted in Pedlosky (1987, section 6.3), the derivation
of QG from PE is somewhat subtle. That is, directly setting
e 5 0 in PE (7)–(9) results in a loss of prognostic time
derivatives, the familiar geostrophic degeneracy. The
above derivation of QG avoids the subtleties of the de-
generacy by directly imposing conservation of PV (19) as
a resolution of the dynamics. Our systematic derivation
of higher-order corrections is also greatly simplified by
recognizing from the outset the central role of PV con-
servation in the dynamics. Thus, the following treatment
of a next-order theory begins from a reformulation of the
PE, which reflects the structure of the QG equations and
retains PV as the key dynamical variable.

3. The QG1 system

We wish to develop a complete and more accurate
theory of PE dynamics, one which preserves and builds
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on the simple mathematical structure of QG. The de-
velopment proceeds in two steps. In this section, the
PEs are rewritten in a form, which we will call QG1,
that reflects the structure of QG. The foundation of QG1

is the representation of the primitive variables (y , 2u,
u) in terms of a set of potentials (section 3a) that exploits
the underlying three-dimensional gradient structure of
the QG balance relations (17). Since QG1 involves no
approximations, its solutions also include inertia-gravity
waves, which can be extracted by an appropriate re-
scaling (section 3c). The second step in the develop-
ment, to be presented in section 4, is to refine QG by
extending the balanced dynamics to higher orders in e.
The required asymptotic expansion in e is straightfor-
ward and systematic because of the form of QG1.

a. The potential representation

The natural three-dimensional gradient structure of
QG balance relations (17) emerges from a rewriting of
the PE into the gradient-organized form

Du
y 5 f 1 ex 1 2Dt

Dy
2u 5 f 1 ey 1 2Dt

u 5 f . (22)z

It is clear that the O(e) terms in (22) are unlikely to
preserve the purely gradient structure of the QG rep-
resentation (17) at next order. The QG1 reformulation
thus begins from the most general representation of the
primitive quantities as a three-dimensional Helmholtz
decomposition,

y 
 
2u 5 =F 1 = 3 C, (23) 

 
u 

where F is a gradient potential and and C is a three-
component curl potential. Since only three independent
potential functions are necessary, the z component of
C can be taken to be zero, thus defining the QG1 near-
gradient representation:

y F F 2 G     x z
    
2u 5 =F 1 = 3 G 5 F 1 F . (24)     y z    

u 0 F 1 G 2 F     z x y

Asymptotic consistency with QG requires that F be the
QG pressure f 0 at leading order, and that F and G be
O(e).

It is important to note that the potentials in (24) need
not be unique. This is also the case in QG, where f 0

is determined only up to an arbitrary constant. The non-
uniqueness is a more subtle issue for QG1, since the
zero vector has the nontrivial potential representation

2H y
 

0 5 =H 1 = 3 H (25) z x 
0 

whenever H(x, y, z) is a harmonic function (¹2H 5 0).
In the QG1 scheme, this ‘‘harmonic ambiguity’’ allows
flexibility in applying the physical boundary conditions
to the three potentials.

Because the continuity equation (7), which relates
vertical velocity to (u, y), is diagnostic, it is also easy
to write w in terms of the new potentials. Substituting
the form (24) for u and y into (7), a vertical integration
yields

ew 5 Fx 1 Gy. (26)

Horizontal divergence (2wz) therefore is associated
only with F and G.

As a final note on the near-gradient representation,
the potentials of (24) can also be reconfigured into a
three-dimensional vector velocity potential,

u G G     
    

y 5 2= 3 2F , u 5 = · 2F , (27)     
    
ew F F     

that satisfies continuity equation (7) and incorporates
the QG structure through the divergence relation for
potential temperature.

b. QG1 reformulation of PE

We next write the PE in a form that reflects the struc-
ture of the QG balance relations (a1) and (a2), and bal-
anced dynamics (b1) and (b2) using the near-gradient
representation [(24)]. Although it is an unapproximated
version of the PE, this reformulation will be termed QG1

to suggest its relation to QG.
In QG1 the three potentials are determined from three

equations that reduce to Poisson problems when e 5 0.
The equations for the curl potentials are obtained by
equating the curls of the near-gradient representation
(24) and the gradient-organized PE (22) and making
substitutions involving (26) and (9), which yields:
(a01) curl potentials,

Du Dy
2¹ F 5 e 2 11 2 1 2[ ]Dt Dt x z

s , (F 1 G ) 5 0.x y

Du Du
2¹ G 5 e 2 2 1 2 1 2[ ]Dt Dt y z

(28)

These equations are labeled (a01), rather than being
incorporated into (a11) below, as they have no coun-
terpart in the QG relations (a1) and (a2); they are, how-
ever, intimately related to the QG diagnostics for w as
will be shown later in this section.

The surface boundary condition in (28) follows from
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(26) and the requirement that ws 5 0. This single con-
dition is insufficient to uniquely determine both curl
potentials, but a convenient consequence of the har-
monic ambiguity (25) is that one may choose any bound-
ary conditions that yield unique F and G and that are
consistent with (Fx 1 Gy)s 5 0.

In QG1 the gradient potential F plays a role analo-
gous to the QG pressure f 0. Its determining equation
is the definition of potential vorticity equation (14):

(a11) gradient potential,
2¹ F 5 q 2 e= · {u(= 3 u )},H

s s(F 1 G 2 F ) 5 u . (29)z x y

Note that the boundary condition for F depends on the
boundary conditions chosen for F and G at zs 5 0, 1.
In terms of the three potentials, the physical quantities
are given by

(a21) primitive variables,

y 5 F 2 Gx z

2u 5 F 1 Fy z

u 5 F 1 G 2 Fz x y

ew 5 F 1 G , (30)x y

where these relations are simply restatements of the
near-gradient representation (24) and continuity (26).

The QG1 equation set is completed by the full three-
dimensional advection of PV and its associated tem-
perature boundary condition:

(b11) 3D advection,

] ] ] ]
D [ 1 u 1 y 1 ew ; and (31)

]t ]x ]y ]z

(b21) advection dynamics,

Dq 5 0, (D u)s 5 0. (32)

It is again emphasized that the QG1 equation set (28)–
(32) is an unapproximated reformulation of the full PE
(7)–(9) in terms of the potentials F, F, and G.

The pressure f in QG1 completely decouples from
the dynamics. If desired, it can be recovered by a Pois-
son inversion as the deviation (f 2 F) from the gradient
potential:

Du Dy
2¹ (f 2 F) 5 e 1 ,1 2 1 2[ ]Dt Dt

x y

s[(f 2 F) 2 G 1 F ] 5 0, (33)z x y

which results from equating the divergences of (24) and
(22).

What have we achieved by these manipulations? No
approximations have been made in reformulating the
PE into QG1, but the structure of the equations now

mimics QG. Indeed, QG can be derived simply by set-
ting e 5 0 in the QG1 equations: (28) shows that F 5
G 5 0, (29) and (30) reduce to the QG balance relations
with the addition of w 5 0, (32) becomes the QG dy-
namics, and (33) shows that F 5 f 0. The intimate
relation of the curl potentials F and G to the usual QG
diagnostics for the ageostrophic flow is also apparent
in the limit of small e, as the right side of (28) becomes
the components of the vector Q, which in QG forces
the ageostrophic circulation (Gill 1982; section 12.10)
and whose divergence also appears as the forcing term
of the QG omega equation (21).

c. Gravity waves in QG1

Although the scaling and organization of the QG1

equation set (28)–(32) are designed around the structure
of QG balance, QG1 remains an unapproximated re-
formulation of the original PE (7)–(9). The balanced
motions are then characterized by solutions with F 5
O(1), F, G 5 O(e) and which evolve on an O(1) time-
scale implied by the nondimensionalization (6).

A different dynamics results from the assumption that
solutions evolve on a fast timescale of t 5 t/e and that
F 5 O(e) and F, G 5 O(1). Since t derivatives scale
O(1/e) larger than t derivatives, the t derivatives in the
QG1 equations for the curl potentials (28) appear at
leading order and must be promoted to the left side:

2¹ F 1 [(G 2 F ) 1 G ] 5 O(e)x y x zz t (34)
2¹ G 1 [(G 2 F ) 2 F ] 5 O(e),x y y zz t

where only nonlinear spatial derivatives remain on the
O(e).

Homogeneous O(1) solutions of (34) for F, G are
pure inertia-gravity wave modes. Fourier wave solutions
of the form exp[i(kx 1 ly 1 mz 2 vt)] possess the
linear dispersion relation

2 2k 1 l
2v 5 1 1 , (35)

2m

which is as expected for hydrostatic gravity waves in a
rotating fluid (Gill 1982, section 8.4). The assumed ab-
sence of a balanced part to the flow (F, q K F, G)
implies that only O(e) variations of q are induced by
these wave motions [(29)].

Together with the QG solutions that emerge from
QG1 by retaining slow time dependence and setting e
5 0, these gravity wave solutions demonstrate that the
near-gradient representation effects a natural separation
of the solutions into predominantly balanced and gravity
wave components through the decomposition into the
gradient and curl potentials. That this separation is only
strictly true for leading order inversions is evident by
the coupling at next order in the QG1 equations. Thus,
in the expansion of QG1 presented in the next section,
‘‘filtering’’ of gravity waves is not inherent in the near-
gradient representation but rather is enforced through
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the restriction that the time derivative (or, more gen-
erally, material derivative) of the solution be O(1) under
nondimensionalization. This choice naturally excludes
the fast timescale homogeneous modes of the curl po-
tentials and ensures that F, G remain O(e) on timescales
t K O(1/e).

4. Next-order corrections to QG

a. Expansion of QG1

A systematic perturbation theory for QG1 results by
representing the potentials as power series expansions
in Rossby number:

0 1 2 2F(x, y, z, t) ; F 1 eF 1 e F 1 . . .
1 2 2F(x, y, z, t) ; eF 1 e F 1 . . .
1 2 2G(x, y, z, t) ; eG 1 e G 1 . . . . (36)

Since we know that the leading-order theory for balance
is QG and has F 0 5 G0 5 0, the form of the series is
chosen accordingly.

Derivation of equations for (Fn, Gn, Fn) is now
straightforward. The resulting equations through one or-
der beyond QG are given in section 4b. In the iterative
calculation of these series, the primitive variables in
correction terms in (a01) and (a11) are replaced using
the potential representations (a21). The dynamical var-
iables (q, us), however, have not been expressed ex-
plicitly as a perturbation series. Allen (1993) and Warn
et al. (1995) also advocate leaving the dynamical var-
iable unexpanded in similar asymptotic schemes. Such
an approach is both natural and convenient; in com-
putational implementations, for example, it is simplest
and asymptotically correct to advect the full (q, us) by
the winds correct to the desired order. That is, the as-
ymptotic correctness of balanced models resulting from
(36) is just the order to which balanced winds are ob-
tained for the advection of (q, us). Expansions for q and
us can be introduced when necessary, as in the analytic
solution for a surface edge wave in section 5a or the
application of solvability conditions below.

The restriction of the dynamics to balanced motions
requires not only the form of the series expansion in
(36), but also the assumption that material derivatives
in (a01) respect an O(1) scaling. Thus, the material de-
rivatives appearing in the balance relation (a01) (and
possibly in lateral boundary conditions) can be diag-
nosed from lower-order terms. If initial conditions or
the subsequent evolution of the flow cause these material
derivatives to become large, diagnosing them is no lon-
ger asymptotically valid. This is typically the case after
long times t ; O(e). This condition signals the break-
down of ordering of the perturbation series (36) and the
potential involvement of gravity waves.

It remains to verify that the linear elliptic problems
resulting from the iterated solution of (a01) and (a11)
are well posed at each order. This is an important tech-

nical issue that involves boundary and solvability con-
ditions. We consider here only the horizontally periodic
case, while appendix B shows through a generalization
of the arguments of McWilliams (1977) that the case of
lateral walls, though more complicated, also yields well-
posed problems.

In a horizontally periodic cell, the only requirement
on the bounding surface for F and G is ws 5 (Fx 1
Gy)s 5 0. As noted earlier, conditions at zs 5 0, 1 for
F or G individually are arbitrary and can be chosen for
convenience, as long as they are consistent with ws 5
0. A particularly good choice for computations is

Fs 5 0, Gs 5 0, (37)

which avoids solvability issues arising from purely de-
rivative boundary conditions and insures that the Pois-
son problems for F and G are well posed at each order.

The PV inversion for F in (29) is assured provided
that the PE integral constraint of (15) is satisfied to the
order of the expansion. Two issues arise in relation to
this solvability condition. The first is the initialization
issue, which demands that the initial conditions be con-
sistent with the above integral constraint, as well as
balanced, up to the desired order of accuracy of the
perturbation scheme. The second is the inversion issue,
which arises at subsequent times when the inversion for
F is done at the level of a perturbation expansion, where
solvable Poisson problems must be posed at each order
(up to the initialized accuracy).

A construction for initializing a higher-order balanced
flow is to specify F0(t 5 0), which thus provides con-
sistent q0 and u0s. Further corrections (Fn, Gn, Fn) can
be generated from the initial F0 provided the the po-
tential vorticity q is adjusted by an O(en) constant to
ensure the existence of each Fn(t 5 0) as iterated so-
lutions of (29). This adjusted q is then a consistent value
for PV to higher order in e.

The solvability condition on the PV inversion be-
comes more subtle at subsequent times. In the full PE,
the integral constraint of (15) is satisfied exactly at all
times. For a perturbation solution truncated to O(eN),
the integral constraint will only be maintained up to the
order of truncation, and small O(eN11) discrepancies are
to be expected.

Inversion for F 5 F0 1 . . . 1 eN FN thus requires
modifications of the given q and us by at most O(eN11),
consistent with the asymptotic correctness of the solu-
tion. In practice, however, inversions for each Fn are
done order by order and invertibility for Fn will require
a temporary partitioning of the solvability condition that
resembles e expansions of q and us. For example, when
the full q and us is used in the inversion for F0 using
(29) at leading order, it is unlikely that the leading-order
part of the solvability integral (15) will be exactly sat-
isfied. Fortunately, this error will be at most O(e) and
the integral can be satisfied by an O(e)-close choice of
q0 and u0s, with the O(e) adjustments q 2 q0, and us

2 u0s being deferred to the F1 inversion. The deferring
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of successively smaller violations of solvability can then
be continued up to the initialized order of accuracy,
since solving for the full F 5 F0 1 . . . 1 eN FN requires
net adjustments no larger than O(eN11) to q and us.

In short, both the initialization and inversion issues
in an O(eN)-correct expansion can be resolved, at any
specific time, through an asymptotically ordered parti-
tioning of the PV,

q ; q0 1 eq1 1 e2q2 1 . . . 1 eNqN 1 O(eN11), (38)

which permits inversion for Fn at each level (0 # n #
N). For convenience, the qn partitions for n . 0 can be
taken to be constants. If desired, us can be similarly
partitioned for convenience in satisfying the solvability
constraint at each order. We emphasize that the full,
unpartitioned q is used in the advection equation (b21);
the partition [(38)] is merely a temporary expedient re-
quired for solvability of the order-by-order inversions
for Fn.

These ideas are illustrated by the analytical construc-
tion of the next-order correction for a surface edge wave
in section 5a. Results of a numerical implementation of
the QG1 approach will be presented in a separate article.

b. QG11 equations

It is now a simple matter to derive equations that
extend QG to an additional order of accuracy in e; the
resulting balanced model will be referred to as QG11.
Substituting the series expansion (36) into the QG1

equations (28)–(32) and omitting O(e2) terms yields

(a110) QG pressure,

¹2F0 5 q0, 5 u0s;0sFz (39)

(a011) curl potentials,

2 1 0 0¹ F 5 2J(F , F )z x 1 1 s, (F 1 G ) 5 0; (40)x y2 1 0 0 6¹ G 5 2J(F , F )z y

(a111) gradient potential,
2 1 1 2 0 0 0 2¹ F 5 q 2 [(¹ F )F 2 |¹F | ],zz z

1 1 1 s 1s(F 1 G 2 F ) 5 u ; (41)z x y

(a211) primitive variables,
0 1 1y ; F 1 e(F 2 G )x x z

0 1 12u ; F 1 e(F 1 F )y y z

0 1 1 1u ; F 1 e(F 1 G 2 F )z z x y

1 1w ; F 1 G 1 O(e); (42)x y

(b11) 3D advection,

] ] ] ]
D [ 1 u 1 y 1 ew ; and (43)

]t ]x ]y ]z

(b21) advection dynamics,

Dq 5 0, (Du)s 5 0. (44)

As discussed in the previous section, if properly ini-
tialized at t 5 0, then at all later times a temporary
partition of the the dynamical variables q, us can be
constructed

0 1 2q ; q 1 eq 1 O(e )
s 0s 1s 2u ; u 1 eu 1 O(e ), (45)

which satisfy the first two orders of the solvability con-
straint (15)

z510 0sq dV 5 (u ) dx dy (46))E E E E E z50

z511 1s 0 0 0q dV 5 [u 1 F (F 1 F )] dx dy,)E E E E E z xx yy z50

(47)

where the first integral guarantees the invertibility of
(39) and the second (41). In computational implemen-
tations, the small O(e2) discrepancies in the partitioning
of (45) are to be expected and can be neglected. We
emphasize again that this partition is required only for
the inversion of q for F0 and F1; in particular, the ad-
vection dynamics of (44) needs not incorporate (or pro-
duce an evolution of q that respects) the partition.

Only the leading order w is required in the advection
of potential vorticity. In a horizontally periodic cell, it
may be obtained without diagnosing a time derivative.
With other boundary conditions, however, this is not
generally possible (see appendix B).

5. The finite-amplitude Eady edge wave in QG11

a. Perturbation solution

Initial understanding of the QG11 equations can be
obtained through the direct construction of a next-order
solution. Here, we present the corrections for a finite-
amplitude surface edge wave, which serves as a dem-
onstration of the iterative solution procedure and an
illustration that the QG11 equation set is analytically
tractable.

An exact, nonlinear solution to the QG equations is
the Eady edge wave (Gill 1982, section 13.2), which
represents a traveling wave trapped against the surface
z 5 0. The solution superimposes a horizontally periodic
traveling wave Fe onto y-independent geostrophic zonal
flow with constant vertical shear:

0 eF [ 2yz 1 F

2lz5 2yz 1 A cosk(x 2 ct) cosly e . (48)

The upper boundary is replaced by a decay condition
as z → `.

The simplest case has zero interior potential vorticity,
q0 5 0. The Laplacian of F0 then vanishes, which yields
the wavenumber condition

k2 1 l2 5 l2. (49)
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Furthermore, the edge wave trivially satisfies the por-
tion of the QG dynamics [(19)] relating to interior PV.
The requirement in (19) that (D 0u)s 5 0 then determines
the phase speed c of the wave; replacing the time de-
rivative (]/]t) by a horizontal derivative (2c]/]x) results
in

J(cy 1 Fe, 2y 1 ) 5 0 for z 5 0, (50)eFz

which, by the exponential decay of Fe in the vertical,
selects

c 5 1/l. (51)

Although it is typical for parameter relations to require
perturbative corrections, this proves unnecessary for the
QG11 edge wave so that both (49) and (51) are exact
through next order.

Construction of a QG11 edge wave solution requires
that next-order corrections be found that also propagate
with speed c. Substituting F0 into (40) and making lib-
eral use of ¹2Fe 5 0 and 5 2lFe, the solutionseFz

for the curl potentials are

z l
1 e e2F 5 2 F 2 (F ) ,xx yl 2

z l
1 e e2G 5 2 F 1 (F ) . (52)xy xl 2

These imply

w0 5 1 5 lz ,1 1 eF G Fx y x (53)

thus satisfying the boundary condition ws 5 0.
Substitution of the leading-order edge wave F0 into

the QG11 equation for the scalar potential (41) gives

¹2F1 5 q1 1 [( )2 1 ( 2 1)2 1 ( )2]. (54)e e eF F Fxz yz zz

Solvability of the Poisson equation requires that an O(e)
correction to the PV be introduced (q1 5 21), so that
the solution for F1 is

2l
1 e e 2 1˜F 5 2zF 1 (F ) 1 F , (55)y 2

where is a homogeneous (harmonic) solution to be1F̃
determined by the requirement that the O(e) dynamics
is consistent with the assumed traveling wave solution.
Since q is still spatially constant, its advection remains
trivially satisfied. After some manipulation, the QG11

equation (44) for us can be written as

3l
e 1 1 e e 2J cy 1 F , u 1 lF 1 F 1 (F ) 5 O(e),y[ ]1 22

on z 5 0, (56)

which certainly is satisfied if the second argument of
the Jacobian is zero.

Replacing the temperature by the potential represen-
tation u1 5 1 2 then gives the boundary1 1 1F G Fz x y

condition for the homogeneous part of the scalar po-
tential

l
1 1 2 e2˜ ˜F 1 lF 5 2 ¹ (F ) on z 5 0, (57)z H2

where is the horizontal Laplacian. Solving 5 02 2 1˜¹ ¹ FH

subject to (57) shows that consists of harmonics gen-1F̃
erated by the QG11 perturbations

2 2A k l
1 22kzF̃ 5 cos2k(x 2 ct) e

2 l 2 2k
2 2A l l

22lz1 cos2ly e
2 l 2 2l

2A
2 22lz2 l cos2k(x 2 ct) cos2ly e (58)

2

and completes the specification of all three QG11 po-
tentials. The pressure correction can be inverted from
(33) and is given by the expression

1
1 1 2 e2f 2 F 5 2 ¹ (F ) (59)H4

so that the QG11 edge wave pressure and temperatures
have been determined.

b. Flow patterns

In the QG1 representation, the potentials F, F, and
G are not uniquely specified because of the harmonic
ambiguity, so only the derived quantities (winds, pres-
sure, etc.) are physically significant. Figures 1a and 2a
show fields of pressure and potential temperature at the
surface for the square QG edge wave (48) with (k 5 l
5 1, l 5 2). Since w 5 0 on z 5 0, the isentropesÏ
are also streamlines for the wave-relative flow. In the
wave-relative frame of reference, typical trajectories
move from right to left.

The QG solutions have two distinct flow patterns,
which are associated with a transition that occurs at a
critical amplitude Ac 5 1/l. At small amplitudes, the
streamlines are wavy perturbations to uniform flow, as
shown in Fig. 1a for A 5 0.5 Ac. But above the critical
amplitude (Fig. 2a, A 5 2.0Ac), isolated extrema appear
in potential temperature, indicating regions of fluid
trapped within closed streamlines. These regions consist
of cyclone–anticyclone pairs embedded within the
wave. In either case, however, the QG solutions have
symmetry between relatively warm and relatively cold
air and between low and high pressure.

Figures 1b and 2b show the symmetry breaking by
the QG11 corrections, using the same parameters as the
QG solutions and e 5 0.1. Relative to the symmetric
QG wave, extrema are now biased toward warm anom-
alies and low pressures, and regions of warm temper-
atures or low pressures (relative to a horizontal average)
have shrunk in area. The asymmetry in the large-am-
plitude case is also manifest in the cyclone–anticyclone
pairs, which are biased toward the cyclones. Not ap-
parent from these surface plots is a northward tilt with
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FIG. 1. Edge wave solutions for (a) QG and (b) QG11. The am-
plitude A 5 Ac/2 is below the critical amplitude at which closed
streamlines and vortices appear. Surface pressure contours are shown
in black at an interval of 0.2 with positive/zero/negative values in-
dicated by solid/thick/dashed contours. Surface temperature contours
are shown in gray at intervals of p/2. For these traveling wave so-
lutions, the isotherms are also material streamlines with flow from
right to left (in the eastward moving, wave-relative frame of refer-
ence).

FIG. 2. As in Fig. 1 but for an amplitude A 5 2Ac sufficient to
produce closed streamlines. Note the substantial asymmetries in (b)
between regions of cyclonic and anticyclonic flow.

height of the QG11 solution, which results from the first
term in (55).

There is also an intermediate regime very close to the
critical amplitude where the QG11 waves possess only
cyclonic vortices. An example is shown in Fig. 3 (A 5
Ac 1 0.005).

Unfortunately, we have been unsuccessful in extract-
ing a clear physical mechanism for the cyclonic asym-
metry. Within the QG11 edge wave solution, all of the
asymmetries are associated with the harmonics gener-
ated by quadratic nonlinearities that appear in all three
of the potentials. For pressure, there are three instances
of nonlinear corrections: the particular solution part of
F1 (55), the homogeneous solution part of F1 (58), and
the pressure deviation (59). One indication of the com-
plex interaction of these nonlinearities in the square
edge wave is that only the homogeneous contribution

(58) enhances the low pressure, while the others enhance
the high.

Further evidence of the subtlety of the QG11 effects
is that certain elements of the symmetry breaking are
reversed for elongated waves with either k/l or l/k larger
than 3. In particular, cold anomalies and high pres-Ï
sures are enhanced, and closed streamlines form first
within anticyclones as A is increased. This altered sym-
metry breaking is associated with a sign change in either
of the denominators l 2 2k or l 2 2l in (58). It is1F̃
as yet unclear whether the resonance phenomenon that
occurs when l 5 2k or l 5 2l reflects a realistic feature
of atmospheric dynamics, or merely results from an ac-
cidental consequence of the traveling wave assumption.

Finally, the QG11 solution can be checked in the limit
case of l 5 0 against the semigeostrophic solution,
which is also accurate through O(e) when l 5 0 (Gent
et al. 1994). With uniform PV, the semigeostrophic
equations are equivalent to QG, but with x replaced by
the geostrophic coordinate X 5 x 1 ey 5 x 1 ef x

(Hoskins and Bretherton 1972). Thus, for the edge wave
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FIG. 3. The QG and QG11 edge wave solutions for an amplitude
(A 5 Ac 1 0.005) close to the QG critical value. In the QG11 case,
closed streamlines exist only within cyclones.

with l 5 0, the semigeostrophic solution gives the fol-
lowing implicit expression for the pressure gradient f x:

2kzf 5 2kAe sink(X 2 ct)x

2kz5 2kAe sink(x 1 ef 2 ct), (60)x

which can be solved to O(e) and integrated to

f 5 A cosk(x 2 ct)

1
2 2 22kz1 ek A e [1 2 cos2k(x 2 ct)]. (61)

4

This is identical to the QG11 result, using (58) and (59).

6. Summary and discussion

Quasigeostrophic theory can be derived as the leading
order in an asymptotic expansion of the primitive equa-
tions for small Rossby number e (Pedlosky 1987). Here
we have presented a systematic scheme for extending
such an expansion to arbitrary order in e, with particular
emphasis (section 4b) on the next-order theory beyond
QG, which we term QG11. Our approach is to rewrite

the PE in a form that anticipates the mathematical struc-
ture of QG. To this end, we replace [as in (1)] the prim-
itive variables u, y , and u with scalar potentials F, F,
and G, where to leading order F is the geostrophic
streamfunction and F and G determine the ageostrophic
secondary circulation. Within this formulation, asymp-
totic expansion of the PE is straightforward.

Of course, ours is not the only approach to extending
QG—numerous other balanced models provide an ad-
ditional order of asymptotic accuracy in e beyond QG.
These include models based on decomposing the hor-
izontal flow into nondivergent and irrotational contri-
butions; approximate equation sets are then obtained by
truncating the horizontal divergence equation and either
the vertical vorticity or PV equations [see Lorenz (1960)
and Gent and McWilliams (1983b) for the former, Char-
ney (1955) and Raymond (1992) for the latter], or by
approximating the horizontal momentum equations di-
rectly (Allen 1991; Xu 1994). Other approaches are
based on neglecting time derivatives of the horizontal
divergence (McIntyre and Norton 1994, personal com-
munication), or attempt to preserve Hamiltonian struc-
ture in the approximate equations (Holm 1996), or in-
volve, as here, an expansion in Rossby number (Snyder
et al. 1991; Allen 1993; Vallis 1996a,b). All of these
approaches agree by definition at O(e) but differ at O(e2)
owing to differences in their methods or in the form of
the PE from which they begin.

The work of Allen (1993) and Allen and Newberger
(1993) merits special mention. Together these constitute
the first implementation of a systematic extension of
QG to higher order in e. In contrast to the formulation
presented here, which is based on PV and its advection,
Allen chooses pressure as the distinguished, unexpanded
variable whose evolution governs the flow. Furthermore,
this pressure inversion is formulated as an iterative per-
turbation procedure that offers a very compact com-
putational implementation, as well as a clear recipe for
stably diagnosing time derivatives.

Our approach has the virtue that it builds directly
upon the foundation of QG. Because the mathematical
structure has a direct relation to that of QG, we expect
that, conceptually, the dynamics are also closely related
to QG. Moreover, our approach results in equations that
are computationally and analytically simple. Numerical
solution is straightforward, as only inversions of Pois-
son equations are required, and existing code for a QG
model can be easily modified to compute QG11 solu-
tions. Nontrivial solutions are also analytically acces-
sible, as is illustrated here (section 5a) with a solution
for a finite-amplitude surface edge wave that is accurate
through an order in e beyond QG. In comparison, ob-
taining solutions to many of the aforementioned bal-
anced models is often difficult.

The QG11 equations, however, lack other properties
that are potentially attractive. First, the conservation
relations of the PE, other than those deriving from ma-
terial conservation of PV, are reproduced only through
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the order of accuracy of the expansion. Many other bal-
anced models, in contrast, are specifically tailored to
preserve analogs of as many such conservation relations
as possible. Second, QG11 is not formally valid outside
the regime of validity of QG given in (5), that is, outside
of e K 1 and B 5 O(1); yet models based on the small-
ness of the horizontal irrotational flow, such as Lorenz
(1960) and Charney (1955), can retain accuracy outside
that regime. If the flow is strongly stratified and the
length scale is small compared to the radius of defor-
mation, the Froude number, F 5 V/NH, is small and
these models make errors that are O(F) even when e 5
O(1) (McWilliams 1985). For frontal flows, the appro-
priate small parameter is the ratio of cross-front to
alongfront velocities (Hoskins and Bretherton 1972) and
the same models have leading-order accuracy in an ex-
pansion in that ratio (Gent et al. 1994). Although we
believe that the asymptotic principles presented here
have broader application, it remains for future work to
apply our approach to other geophysical regimes.
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APPENDIX A

Nonconstant Stratification

Inherent in our choice of the primitive equations (7)–
(9) is a rest state atmosphere of (4) with constant strat-
ification. This assumption can be relaxed by a noncon-
stant vertical profile, s(z), of the rest state PV, and that
also appears in the mean stratification

g
M 2u [ N s(z), (A1)zu0

where s(z) 5 1 recovers constant stratification. This
modifies the PE model in the temperature equation

Du
1 ws(z) 5 0, (A2)1 2Dt

which in turn introduces factors of s(z) throughout the
QG1 formulation. The most significant change in the
fluid mechanics is that O(1) PV advection effects occur
when O(e) weak vertical flows advect the O(e21) strong
gradient of stratification. The immediate impact to the
QG analysis is that w is needed for the leading-order
PV advection. This difficulty can be circumvented either

by including vertical advection into the leading order
dynamics (requires diagnosing w), or through a modified
dynamical equation described by the advection of a
‘‘pseudo-PV,’’ which does not require w at leading order,
and whose equation is presented here without deriva-
tion,

D q 1 1 1
1 u 2 ew q 1 u 5 0, (A3)1 2 1 2 1 2[ ] [ ]Dt s s s s

z z zz

but essentially follows that in Pedlosky (1987, section
6.5).

APPENDIX B

Basin Boundary Conditions on Vertical Walls

For the sake of clarity, the discussion of lateral bound-
ary conditions in the QG11 model was limited to the
simplest case of horizontal periodicity. The next sim-
plest boundary conditions impose no normal flow at
vertical walls, as they are typically used to enclose ocean
basins. The many subtle issues encountered in imple-
menting impermeable wall conditions for balance flow
has been well addressed for QG by McWilliams (1977).
This appendix summarizes the main ideas and the gen-
eralizations required when finding an implementable
scheme for boundary conditions in the QG1 balance
model.

By continuity, the curl potentials satisfy a divergence
relation that becomes the boundary condition along a
vertical wall:

wDu
w(F 1 G ) 5 ew 5 2e , (B1)x y 1 2Dt

where a superscript w denotes evaluation on the wall.
Thus, for all correction orders, this boundary condition
requires the diagnosing of a time derivative of the tem-
perature from a previous order. Note that the same is
true in a formulation obtaining w from the omega equa-
tion [(21)], so that the diagnosing of time derivatives is
a general feature in the application of consistent bound-
ary conditions. Another computational issue is that un-
coupled boundary conditions between F and G are pref-
erable as this avoids iteration in the Poisson inversions
for F and G. This can sometimes be circumvented in
simple geometries, one example being a rectangular ba-
sin where

F 5 ew, G 5 0 on sides with constant x, orx

G 5 ew, F 5 0 on sides with constant yy (B2)

satisfy the condition [(B1)].
The physical conditions of no normal flow are applied

in the inversion for the gradient potential F. For strictly
vertical walls, the orthogonality of the horizontal winds
with the (unit, outward) normal to the boundary n̂ spec-
ifies the tangential derivative of F. At a fixed height,
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z, boundary values of F are given by an arclength in-
tegral,

w Fzw w(F) 5 2 · n̂ ds 1 K (z, t), (B3)E 1 2Gz

where the path orientation is counterclockwise around
exterior walls and clockwise around interior islands.
The important result (Phillips 1954; McWilliams 1977)
is that the constants of integration K w(z, t) at each
height z are determined through the inclusion of an
additional constraint—one derived from another exact
PE integral property, the circulation Gw of the hori-
zontal winds along the wall boundary (Pedlosky 1987,
section 2.2)—

w

wG (z, t) [ (u dx 1 y dy). (B4)E
In QG this wall circulation is a constant in time, but
QG1 requires an additional dynamical equation:

(b31) wall circulation,

w

wG 5 2e w(u dx 1 y dy). (B5)t E z z

In summary, the inversion for F with impermeable ver-
tical walls introduces an additional unknown function
Kw(z, t) for each wall boundary as in (B3); the additional
equation, which completes the well-posedness, is the
circulation constraint of (B4).

The final consideration arising with vertical wall con-
ditions is that the inversion for F still requires a solv-
ability condition. It is again supplied by a PE consis-
tency requirement that is obtained from the volume in-
tegral of potential vorticity (14):

q dx dy dzEEE
sz 515 [u 1 eu(y 2 u )] dx dy) sEE x y z 50

1 w

w1 G 1 e (uu dx 1 uy dy) dz,O E E z z[ ]w 0

(B6)

where the sum denotes integral contributions from each
wall boundary. In particular, for a straight, periodic
channel there are the two sidewall contributions; for a
closed, rectangular basin there is just one.

APPENDIX C

Weak Topographic Surface Boundary

With the assumed small Rossby number scaling in
the PE (7)–(9), the effects of surface topography can be
introduced through a roughening of the surface location

to z 5 eh(x, y). The boundary condition of no normal
flow gives the modified surface condition

w 5 hxu 1 hyy at z 5 eh(x, y). (C1)

For small Rossby number, it is more convenient to main-
tain a flat surface and replace the topographic boundary
condition by its Taylor expansion at z 5 0:

(w 1 ehw 1 . . . ) ; h (u 1 ehu 1 . . . )z x z

1 h (y 1 ehy 1 . . . ). (C2)y z

The continuity condition Fx 1 Gy 5 ew is likewise
applied at z 5 0 using the above expansion for w.
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