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Figure 1: Images (a) and (d) show an analytic plot of g(a1,2 f (x)) using two different scalings of f . Illustrations (b) and (e) picture a spline-
interpolated sampling g( f (x)) assuming a maximum frequency of max| f ′| maxfrequency(g) according to derivation of this paper. For comparison,
images (c) and (f) use the estimate π maxfrequency( f ) maxfrequency(g). Images (a)–(c) and (b)–(e) differ in the scaling of the magnitude of f .
Notice that (f) is undersampled while (e) still truthfully reflects the composite function.

ABSTRACT

In this paper we investigate the effects of function composition in
the formg( f (x)) = h(x) by means of a spectral analysis ofh. We
decompose the spectral description ofh(x) into a scalar product of
the spectral description ofg(x) and a term that solely depends on
f (x) and that is independent ofg(x). We then use the method of
stationary phase to derive the Nyquist limit ofg( f (x)). This limit is
the product of the Nyquist limit ofg(x) and the maximum deriva-
tive of f (x). This leads to a proper sampling of the compositionh
of the two functionsg and f . We then apply our theoretical results
to a fundamental open problem in volume rendering—the proper
sampling of the rendering integral after the application of a transfer
function. In particular, we demonstrate how the sampling crite-
rion can be incorporated in adaptive ray integration, visualization
with multi-dimensional transfer functions, and pre-integrated vol-
ume rendering.

CR Categories: I.4.5 [Image Processing and Computer Vision]:
Reconstruction—Transform methods; I.3.3 [Computer Graphics]:
Picture/Image Generation—Antialiasing

Keywords: volume rendering, transfer function, classification,
signal processing, fourier transform, sampling

1 INTRODUCTION

The fundamental problem in image synthesis is the evaluation of
the rendering integral [13]. In particular, volume rendering is based
on the volume rendering integral, which requires the assignment or
mapping of optical properties to given data valuesf (x). By slightly
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abstracting the integrand within the volume rendering integral, this
mapping can be viewed as a composite functiong( f (x)) = h(x),
whereg is the transfer function assigning opacities to values of the
data f and whereh is the resulting function that is to be rendered.
It is the signalg( f (x)) = (g◦ f )(x) that is the input to the rendering
algorithm. Despite the chosen quadrature formula for evaluating
the integral, a crucial parameter determining the accuracy of the
numerical solution to the integral is the sampling distance. While it
is common to use linear interpolation, it is important to use at least
twice the Nyquist rate in order to guarantee an accurate evaluation
of the integral.

Despite the common use of this approach it has not yet under-
gone a satisfactory mathematical analysis. In particular, there were
no clear statements on how the mapped function is to be sampled
appropriately.

It has been previously suggested [1, 6, 17] that the proper
Nyquist limit of (g◦ f ) is proportional to the product of the respec-
tive Nyquist limits. However, we found this estimate too restricted
for many data models, as demonstrated in Figure 1. The knowledge
of the proper sampling rate of the function(g◦ f )(x) will enable us
to not only predict a proper error behavior, but to allow us to accel-
erate rendering algorithms by skipping over regions that need less
sampling in order to guarantee a particular error behavior.

While solutions for quantized 8-bit data exist in form of pre-
integrated transfer functions, adequate sampling of high dynamic
range volumes and multi-modal or multi-dimensional data, such as
( f , | f ′|), is yet unknown. Typical estimates are based on a proper
sampling of f alone, which is neglecting the effect of the transfer
function. In the following we will present an estimate for suitable
sampling that takes the effect of the transfer function into account.

After a summary of the related work in Section 2 we will present
a rigorous mathematical treatment in Section 3. Section 4 will then
discuss the implications of our analysis for applications in volume
rendering. We will also suggest a solution for multi-dimensional
transfer functions. We summarize our contributions in Section 5
and give some directions for possible future explorations.



2 RELATED WORK

In this paper, we consider sampling in the context of volume render-
ing: what is the appropriate sampling rate for the combined func-
tion (g ◦ f ), when f represents the scalar data andg the transfer
function?

The task on how to properly evaluate the function under the ren-
dering integral has been debated since the beginnings of volume
graphics. Wittenbrink et al. [20] made the observation that it is im-
portant to interpolatef in order to properly super-sample(g ◦ f ),
while recently Younesy et al. [22] pointed out that it is important to
low-pass filterg in order to sub-sample(g◦ f ).

To our knowledge, the work by Kraus [6] and Schulze and
Kraus [17] is the only previous work that investigates the sampling
of the volume rendering integral by means of Fourier analysis and
the sampling theorem. For the function models they use in their
derivations, the Nyquist frequency of(g ◦ f ) is πνgν f , whereνg
andν f are the maximum frequencies ing and f , respectively. This
statement is in accordance with a similar conjecture by Engel et
al. [1].

2.1 Adaptive sampling

The main benefit of understanding the required sampling rate for
the volume rendering integral is that the sampling rate can be
adapted to the lowest possible value in order to reduce the compu-
tational load. Various approaches to adaptive sampling are known
in the literature. A simple example is empty space skipping, which
identifies regions of vanishing contribution to the integral and skips
those regions, as for example in [5, 7, 11, 18, 21]. More advanced
methods flexibly adapt the sampling rate to the requirements of vol-
ume rendering. For example, adaptive sampling can be employed
for hierarchical splatting [9], GPU ray casting [15], or texture-based
volume rendering [8].

2.2 Pre-integrated transfer functions

Pre-integrated volume rendering separates the computation of the
volume rendering integral for a small ray segment from the sam-
pling of the scalar field. Therefore, pre-integration is effective in re-
ducing the required sampling rate. Pre-integration can be employed
for various volume rendering algorithms. Its first uses were for the
cell projection of tetrahedra [16] (with a simpler predecessor [19])
and 2D texture-based volume rendering of uniform grids [1]. One
of the issues of pre-integration is the need to calculate and store
large tables with pre-computed ray segments. Although there exist
methods to accelerate this pre-computation [12, 14], the required
computations and memory increase at least quadratically with the
number of distinct scalar values. Therefore, pre-integration be-
comes less useful for data with high-resolution quantization, such
as 12-bit CT scans or simulation data with floating-point accuracy.
Today’s trend to high dynamic range volume visualization [23] will
increase the demand for appropriate volume rendering methods.

2.3 Multi-dimensional transfer functions

Another trend in volume rendering is the use of multi-dimensional
transfer functions. Levoy [10] considers both the scalar value and
its gradient magnitude to model a transfer function that extracts
isosurface-like structures. Kindlmann [2] and Kniss et al. [3] ex-
tend this idea to include higher-order derivatives in transfer function
design. Unfortunately, multi-dimensional transfer functions are dif-
ficult to use in combination with pre-integration: the larger number
of parameters for the transfer function leads to impractically huge
pre-integration tables. One solution is the on-the-fly computation of
ray segments [4]. However, this approach is restricted to Gaussian
transfer functions.

3 SPECTRAL ANALYSIS

In the subsequent analysis, the data is represented byf(x), which
maps fromR

3 to R
m, with m being the number of modalities. Our

transfer functiong mapsRm to a scalar value inR, which could be
one channel of the optical properties, such as opacity. The compos-
ite function is

h(x) = g(f(x)) (1)

ConsideringG(l) to be the Fourier domain expansion ofg(y), h(x)
results from the inverse transform ofG as

h(x) = g(f(x)) =

(

1√
2π

)m ∫

Rm
G(l)eil·f(x)dl. (2)

This is the inverse Fourier transform givingg(y) for y = f(x). The
Fourier transform ofh(x) can be written as

H(k) =

(

1√
2π

)m+3∫

R3

∫

Rm
G(l)eil·f(x)dl e−ik·xdx. (3)

Switching the order of integration yields

H(k) =

(

1√
2π

)m+3∫

Rm
G(l)

∫

R3
eil·f(x)e−ik·xdxdl. (4)

Noticing that the inner integral is independent ofG, we give it its
own name,P(k, l), and continue

P(k, l) =
∫

R3
ei(l·f(x)−k·x)dx (5)

H(k) =

(

1√
2π

)m+3∫

Rm
G(l)P(k, l)dl (6)

H(k) =

(

1√
2π

)3

< G(·),P(k, ·) >, (7)

This shows that forming the spectrumH(k) of the composite func-
tion can be interpreted as a linear operation on the spectrumG(l),
implemented by means of the scalar product< ·, ·>. In the follow-
ing we will take a closer look at the properties ofP(k, l).

3.1 Visual inspection of the frequency map P(k, l)

It is important to point out thatP(k, l) is independent of the prop-
erties ofg, which in our application is the transfer function, and
solely depends onf(x). Further, in its role as a linear operator it can
be interpreted as a map telling how a certain frequency component
of G of wavenumberl is mapped to a frequency of indexk in the
target spectrum ofH.

To get an intuition about the properties of this function we will
first inspect it visually. Figure 2 showsP(k, l) for different one-
dimensional scalar functionsf (x). In particular we have chosen a
pure Gaussian function and a combination of two Gaussian func-
tions. We have computedP(k, l) as the discrete Fourier transform
of eil f (x), which is a possible interpretation of Equation 5. The pic-
ture is horizontally periodic ink, which is due to the discretization
and does not apply to the continuous case that we deal with in the
subsequent analysis. Further, the function is point symmetric as
P(k, l) = P(−k,−l), wherea denotes the complex conjugate ofa.
This results from Equation 5.

A significant property apparent from Figure 2 is the non-
marginal valued wedge in the middle, starting narrow atl = k = 0
and increasing in size towards largerk. According to Equation 7 the
spectrum of the composite functionH(k) is formed by column-wise
dot products with the spectrumG(l). In order to determine at which
maximum wavenumberk the functionH(k) has a significant contri-
bution, we have to figure out for whichk the main spectrum ofG(l)
overlaps with the high-valued wedge to produce a non-negligible
contribution. This determines the Nyquist rate ofH(k).
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Figure 2: P(k, l) for different functions f (x). (a) single and (c) mixed Gaussians and their corresponding P(k, l) in (b) and (d), respectively. The
upper and lower slope of the low-valued wedge is given by the reciprocal of the minimum and the maximum value of f ′, respectively.

3.2 Analytic interpretation

In Equation 5 it is apparent thatP(k, l) is an integral over an
oscillating functioneiu(x) with unit magnitude and phaseu(x) =
l · f(x)−k · x. For the following analysis we will restrict ourselves
to the one-dimensional case. This is appropriate when performing
the analysis along a single ray. Further we assumef (x) to be a
scalar-valued function.

As an introductory example, consider a linear functionf (x) =

ax. This simplifiesI = P(k, l) =
∫ ∞
−∞ ei(la−k)xdx = δ (la−k), which

is well known. If the phase is zero, the integral is infinite. However,
if the phase is non-zero (changing constantly), the integral is zero.
This behavior is well-known as Dirac’s delta function.

For general functionsf (x) it can be said that the integral has sig-
nificant cancellations in intervals where the phaseu(x) = l f (x)−kx
is changing rapidly. The largest contributions occur where the
phase of the integrand varies slowest, in particular where its deriva-
tive u′(xs) = 0. An approximate solution for the integral can be
obtained by only considering the neighborhood aroundxs, which
are the so-calledpoints of stationary phase.

The previous statement only applies if the termu(x) for the phase
can be split up into the product of a large scalar and a function in the
orderO(1). To facilitate this split, we change the parameterization
of the integrand fromP(k, l) to polar coordinatesP(κ,θ). Hence,
the phase becomesu(x) = κ( f (x)sinθ − xcosθ). The pointsxs of
stationary phase are then given by

du
dx

=
d
dx

κ( f (x)sinθ − xcosθ) = 0 (8)

f ′(xs)sinθ −cosθ = 0 (9)

1
f ′(xs)

= tanθ . (10)

Around eachxs we replace the integrand by a second-order Taylor
approximation resulting in1

Ixs ∼
∫ ∞

−∞
eiκ( f (xs)sinθ−xs cosθ+ 1

2 f ′′(xs)x2 sinθ)dx (11)

Ixs ∼ eiκ( f (xs)sinθ−xs cosθ)

(

2π
κ| f ′′(xs)sinθ |

)1/2

ei π
4 sgn{ f ′′(xs)sinθ}.

(12)

For f ′′(xs) considerably different from zero the integrand vanishes
quickly as(x−xs)

2 increases. The full integral is obtained by sum-
ming all Ixs for all xs fulfilling Equation 10. This case is relevant
for points min( f ′) < 1

tanθ < max( f ′). Outside this range we do not
have any points of stationary phase and the overall integral forming
P(κ,θ) is close to zero.

This observation establishes the main insight of our analysis: the
extremal slopes off form the boundary of the wedge observed in
Figure 2. Therefore, the primary result of this paper is that the
composite function has a maximum frequency of

νh = νg max
x

| f ′(x)| , (13)

whereνg is the maximum frequency ofg. The corresponding sam-
pling rate should be chosen just above the Nyquist rate 2νh.

An interesting case arises if one considers the boundaries of this
interval. They form the boundaries of the wedge. To inspect the
range around this band edge we define a critical angleθe fulfill-
ing sinθe f ′(xe) = cosθe and f ′′(xe) = 0 with xe being a maximum
point of f ′(x). Here, the second derivative vanishes, which requires

1We do not need to consider(x− xs), because we can substitutex with
x = x′ + xs (and then renamex′ back tox).



a third-order Taylor approximation ofu(x). In the vicinity of the
band edge forθ h θe the resulting integral is

P(κ,θ) ∼
∫ ∞

−∞
exp[iκ( f (xe)sinθ − xe cosθ +( f ′(xe)sinθ −cosθ)x

+
1
6

f ′′′(xe)x
3sinθ)]dx (14)

substitutingx = α x̄ usingα =
(

2
κ f ′′′(xe)sinθ

)1/3

= eiκ( f (xe)sinθ−xe cosθ)α

·
∫ ∞

−∞
exp

[

i(κα( f ′(xe)sinθ −cosθ)x̄+
x̄3

3

]

dx̄ (15)

consideringeis + e−is = 2cos(s)

= 2πeiκ( f (xe)sinθ−xe cosθ)α

· 1
π

∫ ∞

0
cos

[

ακ( f ′(xe)sinθ −cosθ)x̄+
x̄3

3

]

dx̄ (16)

= 2πei( f (xe)κ sinθ−xeκ cosθ)

(

2
f ′′′(xe)κ sinθ

)1/3

·Ai

(

κ( f ′(xe)sinθ −cosθ)

(

2
f ′′′(xe)κ sinθ

)1/3
)

(17)

which has a solution involving the Airy function2, whose graph is
shown in Figure 3.
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Figure 3: The graph of the Airy function Ai(t). It decays algebraically
toward positive t with t−1/4. Also notice that its maximum for neg-
ative t. The value for t = 0 in Eq. 17 is attained at the band edge
θ = θe.

3.3 Error analysis

The result in Eq. 17 gives us an idea of howP(k, l) behaves near
the band edge3. The first factor is a complex exponential changing
in phase withk and l and is fixed in magnitude 2π. The second
term is decaying inO(l−1/3). The rapid decay of the third term is
indicated in Figure 3 toward increasingκ . Important to note is that
the main contributions fromAi(t), including its maximum, occur
for t < 0. That means by choosing our cutoff to be at the location,

2It is defined asAi(t) = 1
π
∫ ∞

0 cos(tx+ x3

3 )dx with Ai(0) = 0.355028. . .
3For the interpretation recall thatl = κ sinθ andk = κ cosθ .

tanθ = 1/max| f ′|, we obtain an estimate for the band-limitedness
of H.

3.4 Limits of the model

Since the above derivation is based on approximations, it is impor-
tant to be aware of the limitations, arising from the assumptions
made to facilitate the analysis. The most important one is that the
method of stationary phase is only applicable if the phase is ampli-
fied by a large constant. In our case this means that the derivation
does not necessarily hold for smallκ . This is a reasonable assump-
tion as long as we consider(k, l) not too close to(0,0), which is the
case for the band-limitsνg = lmax of practical transfer functions or
νh = kmax for typical rendered volumesh.

3.5 Extension to multi-modal data and multi-dimensional
transfer functions

In the case of multi-modal transfer functions applied to 3D data,
our functionf(x) would be a mapping fromR3 to R

m with m >
1. Hence, we cannot simplify the multi-dimensional description of
P(k, l). We can, however, assume that our analysis is along one ray
(which we will use for ray-tracing) and assume a mapping fromR

to R
m.

In this case, the Taylor series expansion ofu(x) = l ·f(x)−kx will
simply be a dot product of the Taylor series of each component. I.e.

u′(x) = l · f′(x)− k (18)

= l1 f ′1(x)+ l2 f ′2(x)+ ...+ lm f ′m(x)− k (19)

= 0 . (20)

This is indeed a description of an m-dimensional line in the space
(l,k) which starts in the origin. Given a particular directionl, we
are interested in the maximum max(l · f′(x)) over all x. This will
again be the border of our (m + 1)-dimensional wedge, where the
Airy function takes over.

Looking at just one particular directionl this problem is analo-
gous to our 1D problem in the space spanned by the k-axis and the
l axis. Let us assume, that the maximum frequency of our trans-
fer function in this particular direction is denoted byνl. In anal-
ogy to our 1D treatment we would look for minimalk for which
the length ofl is equal to that particular maximum frequency. I.e.
νl max(l · f′(x)/||l||) = k. Naturally we are looking at all possible
directionsl and will have to pick the maximumk, since this will be
the maximum frequency of ourP(k, l), denoted byνPkl . Therefore,
we get

νPkl = max
|l|=1

(νl max
x

(l · f′(x))) (21)

3.6 Relationship to νd ·νg bounding frequency

A previous analysis [6, 17] suggests that the maximum frequency
to be expected in transfer function composition is given byπν f νg,
multiplying the two band-limiting frequencies, of the data and the
transfer function, respectively. Using Carson’s rule the statement
was derived that over 98% of the energy are preserved within this
cutoff frequency.

Considering the example in Figure 1 wheref (x)= asin(νcx), the
statement really only holds fora = 1. The result for other values of
a could be obtained by extending the previous derivation [6, 17].
However, their previous discussion has to assume some kind of si-
nusoidal modeling of the input function—a restriction that does not
occur in our derivation.



3.7 Other features of f(x) to be found in P(k, l)

There are a few more properties ofP(k, l) that we have come across
during our analysis, that we thought worthwhile to be mentioned
here.

We can extract the histogram off(x). Using a transfer function

g(y) = δ (y−y0) with frequency responseGy0
(l) = eily0. The his-

togram is given by counting how often the valuey0 occurs inf(x),
which amounts to the DC valueHy0

(0).
Another observation comes up when applying sifting4 to Eq. 5

yielding

P(k, l) =
∫

R3

∫

R

δ (l · f(x)−k ·x− y)eiydydx (22)

P(k, l) =
∫

R

∫

R3
δ (l · f(x)−k ·x− y)dxeiydy (23)

H {u(x)}(y) =
∫

R3
δ (l · f(x)−k ·x− y)dx (24)

P(k, l) =
∫ ∞

−∞
Hu(x)(y)e

iydy, (25)

whereHu(x)(y) can be regarded as the analytic histogram of the
phaseu(x).

4 APPLICATION TO VOLUME RENDERING

In the following we are going to lay out implications the above
theory has when applied in volume visualization.

4.1 Adaptive sampling

A direct application is to use the maximum frequency of(g◦ f ) in
order to determine the sampling rate for the volume rendering in-
tegral. Here, the maximum value off ′ is computed in the whole
volume to calculate a fixed, overall sampling rate. Unfortunately,
the (possibly small) region of the data set with the maximum of
f ′ would solely determine the sampling, even if the data set were
slowly changing in most parts. A better solution is adaptive sam-
pling: the rate is chosen space-variant to reflect the local behavior
of the data set.

The space-variant step size can be determined by identifying the
maximum value off ′ in a finite neighborhood around the current
sampling point. In other words, the discussion from Section 3 is
applied only to a window of the full domain off . The step size
in this window region is equal or greater than the step size for a
global treatment. Therefore, we typically obtain less sample points,
without degrading the sampling quality.

There are numerous previous papers on adaptive volume render-
ing, a few of which are mentioned in Section 2. Most of the adap-
tive approaches need some kind of data structure that controls the
space-variant steps size. Our approach also follows this strategy.
The distinctive feature of our approach is not the fact that an adap-
tive step size is used, but that we provide a mathematically based
criterion for choosing the step size. In fact, most of the existing
adaptive rendering methods could be enriched by this criterion.

Our implementation consists of the following parts. First, a vol-
ume of gradient magnitudes is computed for the scalar data set.
Second, the gradient-magnitude volume is filtered using a rank-
order filter that picks out the maximum in a given neighborhood
around a grid point. The size of the neighborhood is user-defined;
its shape is a cube (based on a tensor-product filter). The size of
the neighborhood is a 3D version of the ray-oriented window size
that is used to derive the step size criterion. By using the maxi-
mum gradient magnitude in a 3D neighborhood, the isotropic step

4Sifting refers to the propertyr(s) =
∫ ∞
−∞ δ (s− t)r(t)dt.

size is chosen conservatively in this neighborhood. The third step
is the actual volume rendering. We currently use a CPU ray caster
that selects the sampling distance at a point based on the filtered
gradient-magnitude volume. The maximum step size is clamped to
the size of the neighborhood to avoid sampling artifacts that may
arrive through the construction of the gradient-magnitude volume.
If the sampling rate were to exceed a certain user-defined thresh-
old (e.g., a hundred times the frequency of the data grid), it will be
artificially clamped to that threshold value to avoid excessive sam-
pling.

Note that, for a fixed transfer function, steps one and two of the
above pipeline are pre-processing steps that do not have to be re-
computed during rendering. To speed up the change of transfer
function, additional acceleration data structures should be consid-
ered. For example, ideas for the efficient computation of space-
leaping (see [7]) could be explored.

4.2 Relationship to pre-integration

The rationale for pre-integration is to separate the influences of
the transfer function and of the scalar data field on the sampling
rate of the complete volume rendering integral [1]. The separating
is achieved by pre-computing the contributions of small ray seg-
ments to the rendering integral. Typically, a linear interpolation of
scalar values is assumed within a ray segment. In this way, the pre-
integration table absorbs the effects of the transfer function, while
the actual volume rendering process only needs to reconstruct the
scalar field faithfully.

Our derivation of the Nyquist rate for sampling(g ◦ f ) is an-
other support for the usefulness of pre-integration. We have shown
that the Nyquist frequency for the volume rendering integral is pro-
portional to the Nyquist frequency of the transfer function. There-
fore, pre-integration is especially useful for high-frequency transfer
functions (see, e.g., the extreme case of a random transfer func-
tion [1]).

In fact, we would like to demonstrate how the computation of
pre-integration tables can be related to our description of sampling
rates. The volume rendering integral can be expressed as

x0+L
∫

x0

c( f (x))e
−

x0+L
∫

x
τ( f (x̃))dx̃

dx , (26)

with emissionc, extinction coefficientτ, the start pointx0, and the
segment lengthL. The scalar fieldf is assumed to be linear within
a single ray segment. Iff0 and f1 are the scalar values at the start
and end points of that segment, the corresponding first derivative
is constant in the segment:f ′(x) = ( f1 − f0)/L. Therefore, the
number of sample steps should be given by Eq. 13. Equation 26
can be re-written as an integral in the scalar-value domain by using
a substitution of variables:

f1
∫

f0

c( f )e
−

f1
∫

f
τ( f̃ ) L

f1− f0
d f̃ L

f1− f0
d f . (27)

In this domain, the sampling distance is determined by Eq. 13 and
depends only on the characteristics of the transfer function, not on
f ′. As expected, the generation of pre-integration tables is indepen-
dent of the behavior of the scalar field. In fact, it has been common
practice to compute 2D pre-integration tables with a constant step
size in the scalar-value domain (e.g., for the original version [1]
and the subrange integration approach [12]). For an accurate com-
putation, the frequency of the transfer function should be taken into
account to determine the integration step size.



(a) (b)

Figure 4: Examples of hipiph data set (a,c) sampled at a fixed rate (0.5) and (b,d) sampled with adaptive stepping. The adaptive method in
(b) is using about 25% less samples than (a) only measuring in areas of non-zero opacity to not account for effects of empty-space skipping,
which would skew the advantage even more towards the adaptive approach.

The main issue of pre-integrated volume rendering is are the
computational and memory costs for generating and storing the pre-
integration tables. Even with accelerated pre-computation [12], the
computational and memory requirements for a 2D table increase
quadratically with the number of distinct scalar values. Therefore,
pre-integration is not suitable for data sets with finely quantized
scalar values. An extreme case is floating-point scalar data, which
can for example be visualized by high dynamic rending volume ren-
dering [23]. Another problem is caused by the increase of param-
eters in multi-dimensional transfer functions, which makes the use
of pre-integration prohibitive in these applications. In general, the
problem can be viewed as an imbalance between the number of pre-
computed ray segments and the actually used segment information
during volume rendering: for high-resolution data, most of the ray
segments are pre-computed without using them for volume render-
ing. Therefore, we see an increasing demand for direct sampling
of the full volume rendering integral without any pre-integration.
Here, adaptive on-the-fly sampling will be revived as a most impor-
tant acceleration mechanism (see Section 4.1).

5 DISCUSSION AND OUTLOOK

This paper closes a gap in the understanding and accurate estima-
tion of the volume rendering integral. Namely it closes perhaps the
most important theoretical gap still existing – the proper sampling
rate to be used during the rendering step. Hence, the main contribu-
tion of this paper is an analysis of the frequency behavior applying
a transfer function to spatial data. The resulting rule is that the
band-limiting frequency of the composite functionh(x) = g( f (x))
is given byνh = νg maxx | f ′(x)|. This is not a strict band-limit, but
frequency components decay algebraically beyondνh.

Further we demonstrated an extension to multi-dimensional
transfer functions. In this case a similar band-limit is computed
by νPkl = max|l|=1(νl maxx(l · f′(x))). This is again very simple to
compute in a preprocessing step.

The treatment in this paper is independent of the application and
hence can be applied in other fields of signal processing and ap-
plied mathematics. However, the focus of our application has been
rendering. In addition to the theoretical findings we have applied
the result to a method for adaptive sampling based on the maxi-
mum gradient magnitude. We were able to apply our theoretical re-

sults for an adaptive rendering algorithms, which achieved the same
quality in the rendered images by reducing the number of samples
needed drastically.

5.1 Future work

The above analysis and discussion has consideredg( f (x)) from the
perspective of applying a transfer function to given data. Another
interesting interpretation is to viewf as a change in parameteriza-
tion of g, whereP(k, l) reflects the change in the spectrum ofg.
This might be of use when investigating the effect of a change in
parameterization of a function defined on a surface.

A further application is photo-realistic Fourier-domain render-
ing. Knowing the Fourier domain decomposition off andg we can
now apply the slicing theorem toP(k, l) and only have to recom-
puteG whenever the user changes the transfer function. This is a
rather fast computation.
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