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Topographic Gravity Waves

Atmospheric Concerns
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. mathematical story: idealized steady 2D flows & their stability
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Atmospheric Fluid Dynamics

Fluid Dynamics & Thermodynamics

. incompressible 2D Euler equations with Boussinesq buoyancy

ux + wz = 0

Du

Dt
= −φx

Dw

Dt
− B = −φz

DB

Dt
= 0

. adiabatic buoyancy, B (buoyant↔ light) & geopotential, φ (pressure)

. 2D advection:
D

Dt
=
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

Streamfunction & Vorticity

. streamfunction, Ψ → u = Ψz ; w = −Ψx

. vorticity, η → η = uz − wx = ∇2Ψ
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Stratified Potential Flow

Vorticity/Buoyancy Formulation

. vorticity inversion: ∇2Ψ = η

Dη

Dt
+ Bx = ηt + J(η,Ψ) + Bx = 0

DB

Dt
= Bt + J(B,Ψ) = 0

. 2D streamfunction advection→ Jacobian determinant

J(f,Ψ) =

˛̨̨̨
fx Ψx
fz Ψz

˛̨̨̨
=

˛̨̨̨
fx −w
fz u

˛̨̨̨
= ufx + wfz

Steady Flow

. zero Jacobian condition: J(B,Ψ) = 0→ B is constant along streamlines

. upstream/mean conditions (uniform wind & constant stratification):

Ψ = U z + ψ

B = N 2z + b

ff
→ B =

N 2

U
Ψ

. zero Jacobian condition: localized disturbance streamfunction, ψ(x, z)

J(η,Ψ) +
N 2

U
Ψx = J

 
∇2
ψ +

„N
U

«2

ψ , Ψ

!
= 0
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Long’s Theory (1953)

Helmholtz Equation

. linear Helmholtz equation for steady 2D streamfunction, ψ(x, z)

∇2
ψ +

„N
U

«2

ψ = 0

. special nonlinear solutions for constant stratification & uniform incident wind

Scales

. simple topographic case: three length scales

U/N = wave scale ; H = mountain height ; L = mountain width

. two dimensionless parameters

A ≡
NH
U

, height parameter ; σ ≡
U
NL

, nonhydrostatic parameter

Nondimensionalized Problem

. Helmholtz equation (σ → 0, hydrostatic case)

σ
2
ψxx + ψzz + ψ = 0

. zero surface streamfunction: Ψ(x,Ah(x)) = Ah(x) + ψ(x,Ah(x)) = 0
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A Fourier Approach

Fourier Modes, ei(kx+mz)

. Helmholtz dispersion relation: m2 = 1− σ2k2

. sign choice → far-field conditions: upward group velocity or decay (Queney, 1948)

m(k) =

(
sign(k)

p
1− σ2k2 for |σk| ≤ 1 (long scale radiation)

i
p
σ2k2 − 1 for |σk| ≥ 1 (short scale decay)

General Helmholtz Solution

. Fourier integral representation with far-field conditions

ψ(x, z) = −A
Z +∞

−∞
ĉ(k) e

i(kx+m(k)z)
dk

. z = Ah(x) surface condition: Ah(x) + ψ(x,Ah(x)) = 0

h(x) −
∫ +∞

−∞
ĉ(k) ei(kx+m(k)Ah(x)) dk = 0

. linear integral operator on ĉ(k) → Fredholm integral equation of first-kind

. numerically equivalent to a matrix inversion
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Direct Steady Solve

h(x) −
∫ +∞

−∞
ĉ(k) ei(kx+m(k)Ah(x)) dk = 0

Numerical Discretization

. collocation points: {x1 . . . xα . . . xN} & N knowns: hα = h(xα)

. wavenumbers: {k1 . . . kβ . . . kN} & N unknowns: ĉβ ≈ ĉ(kβ)

. approximate integral for each xα by trapezoidal rule over β = 1 . . . N

hα −
N∑
β=1

ĉβ ei(kβxα+m(kβ)Ah(xα)) wβ ∆k︸ ︷︷ ︸
Kα,β

= 0

Matrix Inversion

. N linear equations in N unknowns: ~(hα) =
ˆ
Kα,β

˜ ~`cβ´
. m(k) is discontinuous at k = 0→ half-line integrals

. full matrix K can be ill-conditioned→ catastrophic loss of precision as N increases
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Numerical Implementation

Fourier Conditioning

. for A = 0 linear theory, discrete Fourier transform is well-conditioned

. equi-spaced discretizations with ∆k∆x = 2π/N is essential

. hydrostatic (σ = 0), critical overturning (Ac = 0.82) case for gaussian topography

. N = 256, x∞ = 8π: log-condition number = 2.85

. Fourier representation allows periodic wraparound→ large computational domains

7



Critical Overturning I

Gaussian Topography

. critical overturning height Ac(σ) as a function of nonhydrostatic parameter σ

. wavebreaking limit for static stability of density-stratified flow

. Fourier formulation (o) limited by large condition numbers

. ill-conditioning edge: 7 & 9 digits lost (- - -)

. σ = 0.35 & Ac = 1.00 shown above
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Critical Overturning II

A Boundary Integral Method Talk Goes Here . . .

. for strongly nonlinear & nonhydrostatic flows (σ ≥ 0.3)

. boundary integral method (∗) remains well-conditioned (σ = 1.0 & Ac = 1.39 below)

. second-kind Fredholm integral equation & non-standard Green’s function G(~xs, ~ξ) (Lyra, 1943)

h(~xs) = µ(~xs)− 2

Z
S
µ(s)

∂G
∂n

(~xs − ~ξ (s) ) ds

9



Question of Stability

Gravity Wave Instability

. Mied (1976), plane gravity waves are parametrically unstable

. Lilly/Klemp (1979), instability observed for sinusoidal topography

. Scinocca/Peltier (1994), unstable dynamics near critical overturning

Time-Dependent Simulations (Craig Epifanio, Texas A&M)

. twin peaks: hydrostatic (σ = 0), vertical motion w plots

. initialized from potential flow

. small height→ Long’s steady solution is stable

. medium height→ oscillatory instability to blow-up (A ≈ 0.5)
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Linear Stability of Long’s Steady Solutions

Hydrostatic (σ = 0) Disturbance Equations (David Alexander & Youngsuk Lee, SFU)

. non-constant coefficients from Long’s streamfunction Ψ(x, z)

ψ̃zzt + J(ψ̃zz + ψ̃,Ψ) + (b̃− ψ̃)x = 0

b̃t + J( b̃− ψ̃,Ψ) = 0

. 2D PDE eigenvalue problem for ψ̃ → ψ̃(x, z)eλt & b̃→ b̃(x, z)eλt

Numerical Linear Algebra

. steady streamline coordinates (x,Ψ(x, z))→ lower boundary at Ψ = 0

. self-adjoint formulation→ Arnoldi iterative search for eigenvalues (large & sparse)
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A Search for Eigenvalues

Simulated Instability vs Unstable Eigenfunction

. 3-peaks: a rough comparison of ψ̃(x, z) . . .

Observations & Results

. growth rate (≈ 0.05) & frequency (≈ 0.29) ↔ most unstable λ = 0.09 + 0.32i

. drift of cells upwind & upward from 3rd ridge

. sharp node line running upward from 3rd ridge

. cellular pattern above 1st ridge

. plane waves far upstream & downstream
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An Idea from Turbulence Thinking

Look at Fourier Spectrum

. eigenmode of a non-constant coefficient PDE in a perturbed 1/2-space (λ = 0.09 + 0.32i)

. transform with odd extension (to Ψ < 0) in streamfunction coordinates

Linear Waves

. Fourier spectrum concentrated on (undisturbed flow) dispersion relation: ω(k,m) = −0.32

ω(k,m) = k ∓
k

|m|
; ~cg(k,m) =

„
1∓

1

|m|
,
k |m|
m2

«
. eigenmode is primarily a superposition of linear waves!
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Spectral Wavepackets

Inversion of Spectral Peaks
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Wavepacket Interference

Phase (- -) & Group (—) Velocity Dynamics

Observations Again

. wavepackets satisfy ω(k,m) = −Im(λ) = −0.32

. drift of cells upwind & upward from 3rd ridge

. sharp node line running upward from 3rd ridge

. cellular pattern above 1st ridge

. plane waves far upstream & downstream

What Mechanism Generates the U & D Wavepackets?
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A Resonant Triad

Fourier Wavevectors: steady flow & eigenfunction (~kU + ~ks = ~kD)
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Instability via Triad Resonance

4-Wave Interaction

. u(x,Ψ) & w(x,Ψ) are non-constant coefficients for linear disturbances ψ̃(x,Ψ) & θ̃(x,Ψ)

. multiplication of Fourier modes↔ addition of wavevectors

U-wavepacket × steady flow → D-wavepacket

U-wavepacket ← steady flow × D-wavepacket

Resonant Instability

. occurs if wave generation leads to positive feedback by constructive interference (phase matters)

. projection onto U- and D-wavepackets alone gives estimate of λ (within 15%)

. depends on height of topography (A > 0.35?)
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Multiple Triads

Spectra for 4 Fastest Growing Modes (of 6 unstable computed)
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Critical Resonant Triad

Triad Resonance as Function of ω0

. triad resonance condition for (kU ,mU)

ω0 = ω(kU ,mU) = ω(kU + ks,mU + 1) = ω(kD,mD)

. generically 2 solutions of U-D type → critical triad occurs for double root!

ωc = −
ks

4
; kU = −3kD = −

3ks

4
; mU = 3mD = −

3

2

. triad resonances only occur for |ω0| < |ωc| → maximum frequency

. is the critical resonant triad responsible for the most unstable mode?
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In Closing

Direct Steady 2D Solve

. non-iterative formulations for exact topographic surface condtion

. Fourier-based 1st-kind solver: near-hydrostatic regime (0 ≤ σ < 0.5)

. Green’s function-based 2nd-kind solver: hydrostatic regime (0.3 ≤ σ < 4+)

. overturning criterion to strongly nonhydrostatic regime

. accurate solutions for linear stability analysis

2D Linear Stability

. identification of linear instabilities for multiply-peaked terrain

. benchmark against time-dependent simulations

. triad resonance mechanism & critical triad conjecture

. height & separation criterion for instability

. implications for atmospheric wave drag estimates/parametrizations?
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A Resonant Triad

Fourier Wavevectors: Steady Flow & Eigenfunction (~kU + ~ks = ~kD)
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Most Unstable Mode

Computational Details

. ψ̃(x,Ψ) & θ̃(x,Ψ) on 384× 480 grid

. 2nd-order finite differences: ∆x = 1/6 = 0.17 & ∆Ψ = π/24 = 0.13

. zero on top/bottom, horizontally periodic & damping layers

. sparse matrix dimension = 367,872; Krylov subspace dimension = 10
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Potential Theory

Gxx + Gzz + G = δ(~x− ~ξ )

Helmholtz Free-Space Green’s Function (σ = 1)

. radiating solution for a delta-function source at ~ξ: G(~x− ~ξ )

. classical, time-harmonic scattering problem in electromagnetics/acoustics

. delta-function response in 2D involves Hankel functions: J0(r)± i Y0(r)

. sign choice determined by far-field radiation condition (implied by time-harmonicity)

Boundary Integral Method

. µ(s), weighted surface distribution of Green’s functions

. ~ξ (s), parametrization of surface boundary (clockwise)

ψ(~x) = −A
Z
S
µ(s) 2

∂G
∂n

(~x− ~ξ (s)) ds

. need topographic Green’s function G(~x− ~ξ ) & weights µ(s)
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Lyra’s Topographic Green’s Function

Delta-Function Topography (linear theory)

. from Lyra 1940 & 1943 (via Alaka 1960) for σ = 1 as Bessel series

Gz(r, θ) =
1

2
Y1(r) sin θ +

1

π

∞X
1

4n

4n2 − 1
J2n(r) sin 2nθ

. Lyra’s critical overturning solution: Ψ = z + 4.06 Gz(r, θ)

M
ile

s/
H

u
p
p
er

t
19

68

. left/right asymmetric Greens function: waves must be downstream (Miles/Huppert 1968)
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Fredholm Integral Equation of Second-Kind

Singular Integral Representation

. Plemelj formula for surface values, ~xs

ψ(~xs) = −A µ(~xs)−A
Z
S
µ(s) 2

∂G
∂n

(~xs − ~ξ (s)) ds

. surface boundary condition→ second-kind integral equation for µ(~xs)

µ(~xs) +
∫
S
µ(s) 2

∂G
∂n

(~xs − ~ξ (s)) ds = h(~xs)

. kernel function is continuous at ~xs = ~ξ (s)→ curvature contribution

. discretized quadrature gives diagonally-dominant matrix→ well-conditioned inversion

. amplitude parameter, A, enters through surface parametrization: ~ξ (s) =

„
x(s)

Ah(x(s))

«
. small A limit: µ(~xs)→ h(~xs)

. nonhydrostatic parameter, σ, handled by rescaling in x (singular as σ → 0)
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Large Amplitude Solutions

Slow Decay

. boundary integral method limited by downstream wake in µ(x)

. use Lyra’s analytical solution as first guess

ψ(~x) = ΛGz(~x)−A
Z
S
µ(s) 2

∂G
∂n

(~x− ~ξ (s)) ds

. accurate computation based on surface residual: hr(x) = h(x) + ΛGz(x, h(x))

. Λ obtained by good guesswork (4.06 for critical overturning)
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Long 1955: Theory & Experiment

σ2ψxx + ψzz + ψ = 0

Finite Amplitude Topography

. on streamline boundaries: ψ = Ah(x) + ψ(x,Ah(x)) = constant
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