A Mathematical View of the Weather

> the basic equations that drive the weather patterns
> the calculus of fluid dynamics & thermodynamics
> making sense of real weather forecast maps
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What is Mathematical Thinking?

Ideas, Thinking & Mathematical Science
> mathematics is a language for quantitative & deductive thought
the universality of math as a language lies in the stories it can tell

there is often a rift in perception of the power of mathematical thought . ..

> one view would say that math can be applied to understand anything

> another would say that math can be applied to understand everything

> we often focus on teaching, “What is the math?”

> yet more compelling might be, “Why we choose to reveal this particular math?"”

Models of the Weather

> a virtual laboratory for atmospheric science
> simulation science: what will tomorrow’s weather be like?

> fundamental science: why is our weather the way it is?



What is Weather?

What determines the Earth’'s weather?

> zonal winds & vortices




Partial Differential Equations of Fluid Dynamics

A Description in Multi-Variable Calculus
> Euler’s equations of inviscid fluid motion (1757) & Acheson (2000)
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What is the natural interpretation of these equations?



The Meaning of Euler |

Follow a Fluid Particle

> isolate a point “particle” moving with the flow: )?(t)
. . LdX o
> point moves with the flow velocity: e a4(X(t),1)

> derivative of density at X (¢)
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Conservation of Mass

> change of local density from convergence/divergence
dp
dt

> =—(V~ﬁ)p‘

X (t) X(t)

> since all fluid points lie on some X (t), then this is true for general &



The Meaning of Euler Il

Follow a Fluid Particle

> isolate a point “particle” moving with the flow: )?(t)

Conservation of Mass & Momentum

> change of local density from convergence/divergence
Dp

= _(vV-@
> T (V-i)p

> change of local momentum is Newton's law
Dpu

=-Vp—pg2
o p—pg

> why doesn’t gravity keep accelerating “particles” downward?
> nature establishes a hydrostatic pressure that (nearly) cancels: p. ~ —pg
> four equations in five variables: i, p, p

> need some thermodynamics . ..



The Speed of Sound

Waves in an Ideal Gas
> ideal gas law introduces temperature: p = pRT

> simplify Euler's: linearize ( — a) no gravity & introduce log

Dt
> 2nd-order PDE that is trying to be the wave equation
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Early Theories for the Speed of Sound in Air

> Newton formula (1687), if sound waves are isothermal (T constant) ...
> log form of ideal gas: logp = log p + log RT
> ¢c=VRT ~279m/s — 15% too small at 0°C
> Laplace formula (1816), if sound waves are adiabatic (s constant) ...
> entropy of air: logs = C'logT — Rlogp
> ¢=+/YyRT = 330 m/s



Incompressible Vorticity Dynamics

Incompressible Euler (V- @) =0

> Helmholtz (1858), vorticity vector: QO=vxia
> curl of Euler equation (p constant):

DS

Dt

> for 2D flow (8/0z — 0, w = 0) gives a scalar vorticity variable: Q= w(x,y,t) 2

=@ -V

Dw
Dt

Zero-Divergence 2D Velocity

> 2D streamfunction, ¢ (z,y,t), where & = V X (¢ 2):

oY oY
u=— and v=——
oy ox
> vorticity inversion (with BCs)
ou ov 2
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Jy ox



Waves in Flow

An Exact Travelling Wave Solution
> streamfunction, ¥ (x, y, t):
P(z,y,t) = cy + Acos(k(z — ct)) sin(ly)
> vorticity, w(z, y, t):

w(z,y,t) = —(k? +1%) Acos(k(z — ct)) sin(ly)

vorticity att = 3.1416

> a natural coexistence of vortices in flow



Simple Equations for Atmospheric Weather

Euler Equations with Coriolis Rotation (1835)

> incompressible and adiabatic
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Dit 1.
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> hydrostatic pressure & Coriolis effect — thermal wind

An Extended Version of Vorticity
> Ertel potential vorticity (1942)
D ((f2+V xi)-(Vs) —o
Dt p o

> this makes it possible to analyze how vortex formation creates midlatitude weather



Simple Equations for Atmospheric Weather

Euler Equations with Coriolis Rotation (1835)

> incompressible and adiabatic
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> hydrostatic pressure & Coriolis effect — thermal wind — jetstream

An Extended Version of Vorticity
> Ertel potential vorticity (1942)
D [ (f2+V x@)-(Vs) —o
Dt P -

> this makes it possible to analyze how vortex formation creates midlatitude weather



The Origins of Storms

Life Cycle of Cyclones, Bjerknes & Solberg (1922)
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An Unstable Atmosphere

Waves in the Atmosphere
> Rossby (1939)
> identifies waves in the midlatitude atmosphere
> equator-to-pole temperature gradient & jetstream
> On the Scale of Atmospheric Motions, Charney (1948)
> simple mathematical solutions for propagating Rossby waves (QG theory)
> Charney (1947) & Eady (1949)
> baroclinic instability of Rossby waves in the tropospheric jetstream

Baroclinic Instability & the Formation of Storms

> asymmetric dynamics to surface low pressure

> leads to a “turbulent” weather pattern




An Unstable Atmosphere

Waves in the Atmosphere

> Rossby (1939)

> identifies waves in the midlatitude atmosphere

> equator-to-pole temperature gradient & jetstream
> On the Scale of Atmospheric Motions, Charney (1948)

> simple mathematical solutions for propagating Rossby waves (QG theory)
> Charney (1947) & Eady (1949)

> baroclinic instability of Rossby waves in the tropospheric jetstream

PE QG+1 R QG

lid

Baroclinic Instability & the Formation of Storms

> asymmetric dynamics to surface low pressure

> leads to a “turbulent” weather pattern




Midlatitude Weather Patterns

GFS Analysis: 122 Fri 26 APR 2019 500mb Heights (dam), Vorticity (1e%/sec)




Midlatitude Weather Patterns

(12Z, 26 Apr 2019 — 5am PDT) Sea-Level Pressure
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GFS Analysis: 122 Fri 26 APR 2019 SLP (mb-1000), 1000-500mb Thickness (dam)




Midlatitude Weather Patterns

(12Z, 26 Apr 2019 — 5am PDT) 200 mB Streamline & Windspeed
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Computational Weather Forecasts

Numerical Weather Prediction

> first forecast (~ 1950), first operational forecasts (~ 1955)

By late 1953, Rossby’s Stockholm group was very busy on BESK, which
Phillips reported was running quite well. Although output was slow (because
of the printer), BESK was faster than the IAS machine on which it was mod-
eled. When their magnetic drum arrived, the Stockholm team planned to
increase grid size, the number of model layers, and forecast length.”

In early spring 1954, Smagorinsky went to Europe and reported that the
British and the Swedes anticipated making daily operational predictions

within 6 months.”® It happened sooner than that. In mid June, Rossby
informed Charney that the Stockholm team had made 23 barotropic fore-
casts for the eastern Atlantic and northern Europe, including two opera-
tional ones, on BESK. Having gotten good results, they were preparing to
make operational 48-hour forecasts.” In contrast, the JNWPU’s computer

would not be available for at least another 6 months. '




Computational Weather Forecasts

(7

Numerical Weather Prediction
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Sensitivity to Initial Conditions

Non-periodic Deterministic Motions, Lorenz (1963)

> a simple set of ODEs extracted from the fluid equations

> vorticity & entropy

9 - KA

at a(x,5)
9 oWe) ATay

a6
+v VY ga—, 7
dx

) —
at d(xz) H ox

x4, (18)

> mode equations

X'=  —aX+o¥, (25)
V'=—XZ+rX-¥, (26)
Z= XY —bz. (27)




The Challenges of Mathematical Weather & Climate

"‘in:": - NAEFS %
Dynamic Meteorology SPENA

> human-level understanding forpour
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Computational Forecasting

> large-scale computing

Statistical Methods

> large-data

> forecast sensitivity
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