OVERLAPPING SCHWARZ ITERATION

1. INTRODUCTION

Our goal is to either analytically solve, or numerically approximate, the 2nd Neumann
eigenfunction of the Laplacian on a generic acute triangle 2 =ABC (see figure). Since we
don’t have an analytic solution on this domain, but can solve problems on sectors or the
circle, we propose a domain decomposition strategy in the spirit of the overlapping Schwarz
iteration.

Let 0 be the incenter of the triangle, and denote by g the interior of the incircle. This
is tangent to the segments AB, BC' and C'A at F, D, E respectively. Denote by I'1y the
segment of the circle connecting F, F'. Denote by 2y the sector AEF, and by ['g; the arc
connecting F, F'. Note that Q; and s overlap. Repeat this process for the other three
vertices. Let us denote the exact second Neumann eigenvalue as .

Now we’ll proceed by iteration. At step n, suppose v for i = 1,2, 3 satisfies

(1) —AU? = A?ui, x €y
o

ov

=0 QfeaQi\FOi

oul  dup
(3) up ™ au]j - %OV uy =0, x € Ly,

The function ug solves

(5) —Augy = Ajui, x € Qo
pouy  oul

(7)

Now (', A\;) solve generalized eigenfunction problems on sectors of circles. If one knows

1 ount . .
Uy L 5, on the curves I'p;, then one can use local Fourier-Bessel expansions to get

u;'. Then one uses their traces onto I'1g, and has the correct data to solve the eigenvalue
problem for uj on the disk. One can use Fourier-Bessel expansions to do this as well.

The claim is that as n — oo, the sequences ] converge to the restriction of the actual
eigenfunction u on the sub-domains. Clearly we have to prescribe a starting guess for the
iteration.
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FI1GURE 1. Domains

1.1. Solving on the wedge ();. We are at step n of the iteration. Suppose ¢ = 1 is fixed

n—1

for concreteness, and the traces of ug_l and 8”(90” on I'g; are known.
(8) —Aul = Auq, x e
ou?
9 L =0 z€ou\T
(9) k=0 2 €00\ Ty
dup  dug”!
(10) ug*% - %u? —0, wely

(11)
We will try the method of particular solutions of Fox and Henrici, adapted to this
problem. We know that since the opening angle is «, in €7 the functions

(12) wg(r, 0) :== J%k V) cos(%kﬁ)

will satisfy the Neumann conditions on the line segments AE, AF, as well as satisfy the
equation —Awg = Awg.

So, we suppose u} = Z]szl crwy(r, 0). We want to find the coefficients ¢y, so as to satisfy
the boundary condition on I'g;. Now, I'g; is an arc of radius py = AE. Let (p1,6;) be 2M
collocation points along this curve. At each point, we want to enforce

n n—1
ouff Ouy

0 @3)ug ' (p1, 93')@(1)1, 0;) — £y (p1,0;)ui(p1,0;5)
M 0 mk Oul 1 M wk
Gd)yug " (p1,6)) ; Chy - xk (VAp) cos(~—~0;) — Toy(ma 0;) ’; ek zx (VA1) cos(~—~0;)

This is equivalent to solving the rectangular nonlinear system
(15) A(NE=0
- . F) n—1
where a;,(\) = uj~*(p1, Qj)%J%k(ﬁpl) cos(?kﬁj) — =0 (p1, 0;)Jzx (VAp1) COS(%ij)

We find the solutions by looking for values of A so that the smallest singular value of
A(X) approaches 0. This is the Moler approach to the original Fox-Henrici-Moler paper.
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Once we locate the solution ¢, we have the iterate u}'. We do this same process for the
other wedges as well.

1.2. Solving on the disk Q3. We are at step n of the iteration, and have solved for the
functions u}'. We therefore have their traces on the arcs I'jo.
The function ug solves
(16) —Aug = Ajug, € Qo
pouy  oul

(17) U 5,
(18)

We shall again use a Fourier-Bessel ansatz: let z,,(r,0) = J,(Ar)e™?) | and assume

’U,g:O, z el

M
ug(r,0) = dinzm(r,0)
k=0
. Repeat the process above of enforcing the (non-standard) boundary conditions at collo-
cation points along I';g.
2. CONVERGENCE?

At the end of the nth step, we have 4 functions: u', i=0,1,2,3 and 4 eigenvalues. We
repeat the process until the eigenvalues are all the same number.



