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Abstract

Let C be a genus 2 curve over Q, and let E1 and E2 be non-
isomorphic elliptic curves over Q, such that C is a degree 3 cover of
E1 and E2. Then, in a certain case E1 and E2 have isomorphic 3-
torision structure over Q. We will study such elliptic curves and find
explicit equations describing C, E1, E2 and the covers. We will also
find expressions for C, E2 and the covers, in terms of the coefficients
of the equation defining the elliptic curve E1.

1 Introduction

During the summer semester of 2005, I was given the opportunity to do an
undergraduate research term with Dr. Nils Bruin at Simon Fraser Univer-
sity. I will provide a summary of the work done, which mainly involved
studying elliptic curves with isomorphic 3-torsion subscheme over the field
of rational numbers. These arise when considering certain degree 3 coverings
of an elliptic curve by a genus 2 curve. These coverings have been studied in
the degree n case extensively by Gerhard Frey, Ernst Kani, Robert Kuhn,
and Tony Shaska.
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Let C be a genus 2 curve and E1 an elliptic curve such that φ1 : C → E1 is
a degree 3 covering. If π1 and πC are specific coverings of the projective line
(which we define later), then there exists an induced covering φ1 such that
the left half of the diagram above commutes. We call this induced covering
the Frey-Kani cover. When ψ1 is “non-degenerate”, C covers another elliptic
curve E2 with degree 3, and induces another Frey-Kani cover so that the
whole diagram commutes. When this occurs, E1 and E2 have isomorphic
3-torsion structure over Q, (Frey and Kani, [2]).

We begin by providing some basic definitions and results involving ellip-
tic curves, genus 2 curves, and coverings. Then we give a summary of work
done by the mentioned authors, but we will only consider the case when
the covering is degree 3. For the most part, we are concerned with which
genus 2 curves can form covers of elliptic curves in this way, and what the
expressions for the Frey-Kani coverings and elliptic curves are. Finally, we
finish with the results of our investigations.

In their study of coverings of elliptic curves, the authors we mentioned
worked mostly over an algebraically closed field, such as C. We were able to
find explicit equations for the elliptic curves E1 and E2 over Q. Also, given
an elliptic curve E1 over Q, we found explicit relations defining φ1 : C → E1

in terms of the coefficients of E1, and found that the parameters for our
genus 2 curve C are given by a genus zero curve, which has a rational point.

2 Preliminaries

We begin with a discussion of elliptic curves and describe some of their basic
properties.

Definition 1. An elliptic curve E over a field K is a nonsingular cubic
curve in two variables, f(x, y) = 0, together with a K-rational point. When
char(K) 6= 2, 3 we can write E in short Weierstrass form as

E : y2 = x3 + ax+ b where a, b ∈ K.

The set of points (x0, y0) ∈ K ×K that satisfy f(x0, y0) = 0 are the points
on E over K, and is denoted E(K).

Although we will not go into the details here, it is possible to define an
“addition” operation on the points of an elliptic curve. Under this addition
operation, the set of points forms a group, where the identity O, is usually
taken to be the point at infinity. We are interested in the set of 3-torsion
points; the points P such that P + P + P = O.
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Definition 2. The set

E(K)[n] = {P ∈ E(K) : nP = O}

is the n-torsion group of E over K.

Lemma 1. For any elliptic curve E over an algebraically closed field K,

E(K)[n] ∼= Z/n× Z/n.

Lemma 2. For any elliptic curve E over Q,

E(Q)[3] � Z/3× Z/3.

Definition 3. Two elliptic curves, E1 and E2 are isomorphic if there exists
a birational regular map between E1 and E2.

Definition 4. Let E1 and E2 be elliptic curves defined over Q. If there
exists a birational map

Φ : E1[3](Q) → E2[3](Q),

defined over Q that is a group homomorphism, we say that E1 and E2 have
isomorphic 3-torsion structure over Q.

Over an algebraically closed field, we can find an isomorphism between
the 3-torsion groups of any pair of elliptic curves because we know what the
group must be. However, over Q it is not generally true that two noniso-
morphic elliptic curves will have isormorphic 3-torsion groups.

Keeping in mind how the group law works, it is easy to characterize the
2- and 3-torsion points. For any elliptic curve E : f(x, y) = 0, E(K)[2] is the
set of points such that f(x0, 0) = 0 and the identity. These are the points
that are inverses of themselves under the group law.

E(K)[3] is the set of inflection points, which occur in pairs above and
below the x-axis, and the identity. This observation allows us to find a
degree four polynomial, whose roots are the x-coordinates of the non-zero
3-torsion points. If E : y2 = x3 + ax+ b then,

d2y

dx2
=

3x4 + 6ax2 + 12bx− a2

4y3
.

Therefore, the eight inflection points on E are (x1,±y1), . . . , (x4,±y4), where
the xi are roots of the numerator above, and the yi satisfy f(xi, yi) = 0. As a
subvariety of E, E(K)[3] is given by E∩Hessian(E). Note that E is a cubic,

3



so we will not see all 8 inflection points unless we are in an algebraically
closed field such as C or Q.

Now that we know a little bit about elliptic curves, we should describe
what genus 2 curves are like and what coverings are. For the purposes of
this discussion, we can think of a genus 2 curve as given by a sextic in two
variables, since any genus 2 curve can be written in the form

C : y2 = a6x
6 + · · ·+ a1x+ a0.

Definition 5. Let f : R → S be a non-constant rational map between
curves. Then, f is a covering of S by R.

Definition 6. Given a covering f : R→ S, the fibre of a point p ∈ S is

{f−1(p)},

and the degree of f , deg(f), is the maximum cardinality of all fibres over an
algebraically closed field.

Definition 7. Ramification points of a covering f : R → S are the finite
set of points p ∈ S such that

|{f−1(p)}| < deg(f),

over an algebraically closed field. If p ∈ S and P ∈ {f−1(p)}, then the
number of branches going through P is the ramificaton index of P , denoted
ef (p).

We’ll give an example of a ramified covering of degree 2.

Example 1. Let C : y2 = w(x−w1)(x−w2) · · · (x−w6) be a genus 2 curve
over an algebraically closed field. Then,

π:C → P1

(x, y) 7→ x

is a degree 2 covering, with ramification points w1, . . . , w6. Each Pi = (wi, 0)
lying above wi has ramification index 2.

The following result gives us a nice way to determine what the config-
uration of ramification points for a cover might look like. We will use it
extensively to determine expressions for the induced Frey-Kani coverings
given in the next section.
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Theorem 3. Riemann-Hurwitz
Let f : R→ S be a covering. Then

2(g(R)− 1) = 2 deg(f)(g(S)− 1) +
∑
p∈R

(ef (p)− 1)

where g(S) and g(T ) denote the genus of S and T respectively.

We’ve defined all the necessary objects to begin our discussion of how to
construct elliptic curves with isomorphic 3-torsion structure of Q.

3 The construction

In this section, we summarize the work pertaining to degree 3 coverings
of elliptic curves done by the authors mentioned in the introduction. The
intention is to outline how the genus 2 curves that form degree 3 covers are
characterized, how expressions for the Frey-Kani covers are determined, and
when we have a second elliptic curve covered by the same genus 2 curve.
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Let us start by defining the maps we want to study above.

Definition 8. Let ψ1 : C → E1 be a covering where,

C : y2 = w(x− w1)(x− w2) · · · (x− w6), where wi ∈ Q
E1 : v2

1 = f1(u1)

such that all coefficients are in Q. The maps πC : C → P1, π1 : E1 → P1 to
the projective lines are

πC(x, y) = x, π1(u1, v1) = u1.

These covers are all degree 2 so we know by applying the Riemann-
Hurwitz formula that πC has six ramification points, W = {w1, . . . , w6}
above P1, and π1 has four, {q1, . . . , q4}, which are precisely the points in
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E1(Q)[2]. All these points have ramification index 2, but more importantly
there exists an induced covering φ1 (the Frey-Kani cover), such that the
diagram above commutes. (See [2]). We are interested in φ1 because a map
between two projective lines is easier to work with than a map between two
curves, ψ1.

If ψ1 : C → E1 is a degree 3 cover, then Riemann-Hurwitz dictates that∑
P∈C

(eψ1(P )− 1) = 2,

so that ψ1 is ramified above two points, each with ramification index 2
(the non-degenerate case), or ψ1 is ramified above only one place, with
ramification index 3 (the degenerate case). We are interested in the first
case, so we will assume that ψ1 is non-degenerate.

Ramification of the Frey-Kani covering occurs in a similar way (see [4],
Theorem 3.1), so that if ψ1 is non-degenerate, then φ1 has four points of ram-
ification index 2. When ψ2 is degenerate, φ2 has two points of ramification
index 2, and one point of ramification index 3.
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In the degree 3 case, ψ1 is called a maximal covering (since it does
not factor over a nontrivial isogeny). When ψ1 is maximal, there exists
a second covering ψ2 : C → E2 of an elliptic curve such that deg(ψ2) =
deg(ψ1) (Shaska, [4]). A nice fact is that once ψ1 is fixed, ψ2 is unique up
to isomorphism of elliptic curves (Kuhn, [3]), and it has a corresponding
Frey-Kani cover φ2. To determine explicit equations for φ1 and φ2, we look
at the relation between the configuration of ramification points.

Recall that π1 is ramified in four places q1, . . . , q4. In the non-degenerate
case, φ1 is also ramified at four places, three of which are the same as π1

(see [4]). Let these places be q1, q2 and q3, and let u1 = 0 be the fourth
ramification point of φ1 (the one not ramified in π1), such that x = 0 above
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u1 = 0 has ramification index 2, and x = ∞ has ramification index 1.
We can do this because the fourth ramification point is rational [3]. These
conditions, with the fact that deg(φ1) = 3 dictate that

φ1(x) =
x2

x3 + ax2 + bx+ c

where c 6= 0 and the denominator has no repeated roots.
Then, C is given by an equation of the form

y2 = (x3 + ax2 + bx+ c)(4cx3 + b2x2 + 2bcx+ c2).

Moreover, since the two coverings ψ1 and ψ2 behave in a symmetric manner,
the denominator of φ2 is 4cx3 + b2x2 + 2bcx+ c2 (see Kuhn, [3]). The roots
of this cubic are unramified points of φ2 above u2 = ∞. φ2 is ramified above
u2 = 0, so let x = d be the point above u2 = 0 with ramification index 2,
and x = e the point with ramification index 1 so that

φ2 =
(x− d)2(x− e)

4cx3 + b2x2 + 2bcx+ c2
.

This determines the scaling of φ2, and Kuhn in [3] gives possible values for
d and e,

d =
−3c
b

and, e =
3ac2 − b2c

9c2 − 4abc+ b3
.

We will verify that the expressions given for d and e are correct, once we
determine explicit equations defining our elliptic curves E1 and E2.

4 Expressions for E1 and E2

If a genus 2 curve C covers two nonisomorphic elliptic curves, E1 and E2,
with isomorphic 3-torsion structure over Q, then C must be given by an
equation of the form

y2 = (x3 + ax2 + bx+ c)(4cx3 + b2x2 + 2bcx+ c2).

Also, the maps from the x-line to the u1-line, respectively u2-line are defined
to be

φ1 : P1 → P1

x 7→ x2

x3 + ax2 + bx+ c

φ2 : P1 → P1

x 7→ (x− d)2(x− e)
4cx3 + b2x2 + 2bcx+ c2
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where

d =
−3c
b
, e =

3ac2 − b2c

9c2 − 4abc+ b3
.

Given this information, we would like to find explicit equations for both E1

and E2, and find expressions for their coordinates u1, v1, u2, v2 in terms of
x and y.

An expression for E1 is given by taking the discriminant of an expression
involving φ1(x).

E1 : v2
1 =

∆x(x2 − u1(x3 + ax2 + bx+ c))
u1

= (a2b2 − 27c2 + 18abc− 4a3c− 4b3)u3
1

+(12a2c− 18bc− 2ab2)u2
1 + (b2 − 12ac)u1 + 4c.

We already have u1 = φ1(x) and we obtain an expression for v1 by substi-
tuting φ1(x) into the right-hand side above. After some basic manipulation
we obtain

v1 =
y(x3 − bx− 2c)

(x3 + ax2 + bx+ c)2

Obtaining an expression for E2 is done in a similar manner, but we must
take the correct twist of the curve. Again, we have u2 = φ2(x) and

Ẽ2 : ṽ2
2 =

∆x((x− d)2(x− e)− u2(4cx3 + b2x2 + 2bcx+ c2))
u2

= −16b8c4(27c2 − b3)(9c2 − 4abc+ b3)4u3
2

−16b6c4(27c2 − b3)(9c2 − 4abc+ b3)3(54ac2 + ab3 − 27b2c)u2
2

−16b4c4(27c2 − b3)(9c2 − 4abc+ b3)2

(729a2c4 + 54axb3c2 − 972ab2c3 − 18ab5c+ 729bc4 + 189b4c2 + b7)u2

+16b2c5(27c2 − b3)(9c2 − 4abc+ b3)(27c2 − 9abc+ 2b3)3.

Substituting φ2(x) into the right-hand side, we obtain

ṽ2√
s

=
y(b3 − 27c4)2((4abc− 8c2 − b3)x3 + (4ac2 − b2c)x2 + bc2x+ c)

(4cx3 + b2x2 + 2bcx+ c2)2

where
s = 16b2c4(9c2 − 4abc+ b3).

The correct twist of Ẽ2 is obtained when v2 = ṽ2/
√
s, so that

E2 : v2
2 =

∆x((x− d)2(x− e)− u2(4cx3 + b2x2 + 2bcx+ c2))
u2

.
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Thus, we have obtained the correct expressions for E1 and E2 over Q.
As mentioned, the authors we cite worked over C, so they did provide ex-
pressions for E1 and E2 over C, but did not provide them over Q.

5 Verifying expressions for φ2

In [3], Kuhn gives an expression for φ2 : P1 → P1,

φ2(x) =
(x− d)2(x− e)

4cx3 + b2x2 + 2bcx+ c2
,

where d = −3c
b
, and e =

3ac2 − b2c

9c2 − 4abc+ b3
.

The configuration of ramification points dictates that φ2 must be in the
above form, but we nevertheless spent some deriving the expressions for d
and e correctly.

To do this, we found

∆x((x− d)2(x− e)− u2(4cx3 + b2x2 + 2bcx+ c2))
u2

,

and made the substitution u2 = φ2(x). The resulting expression should
factor so that there is a cubic denominator, and a numerator that is the
product of a constant in a, b, c, the factor x3 + ax2 + bx + c, and a square
factor. We obtained a system of four equations from which we could derive
the same expressions for d and e. There were other choices, but they would
require an algebraic extension of Q.

6 Finding covers of a given elliptic curve

Given an elliptic curve E1, we were able to find a genus 2 curve C, such that
C is a non-degenerate degree 3 cover of E1. If E1 is given by the equation

ṽ2
1 = ũ3

1 + g1ũ1 + g0,

then the goal is to find the parameters a, b, c in the map

φ1: P1 → P1

x 7→ x2

x3 + ax2 + bx+ c
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in terms of g1 and g0, since C must be defined by an equation in the form

y2 = (x3 + ax2 + bx+ c)(4cx3 + b2x2 + 2bcx+ c2).

In the non-degenerate case φ1 is ramified in 4 places, above 0, q1, q2 and
q3, which depend on a, b and c. If C is to cover E1, then the map

π1:E1 → P1

(u1, v1) 7→ u1

should be ramified above q1, q2, q3 and ∞. Note that the ramification points
here are the 2-torsion points of E1. To accommodate this we shift and scale
E1 so that its 2-torsion points lie at q1, q2, q3 and ∞ by performing a change
of variables,

ũ1 = Au1 +B.

In terms of the map φ1, E1 should be defined by

v2
1 =

∆x(x2 − u1(x3 + ax2 + bx+ c))
u1

.

Equating the right-hand side of the equation above to ũ1 + g1ũ1 + g0, and
matching up the coefficients, we obtain a system of equations that a, b and
c must satisfy. Solving the system using Maple, we see that a, b, c satisfy

0 = 1147912560b3c8g3
1 + 5184b14a2g3

1 + 11664a2b14g2
0 + 972a4b13g2

0

−288a4b13g3
1 + 4a6b12g3

1 + 27a6b12g2
0 + 17496a6b9c2g2

0

−15058224a3b9c3g3
1 − 117074484a3b9c3g2

0 + 223205220b6c6g3
1

−20995200ab10c3g3
1 − 4320a6b9c2g3

1 − 110539728ab10c3g2
0

−2439314190ab7c5g2
0 − 259343208ab7g3

1c
5 + 3779136a6b6c4g2

0

+942244893a2b8c4g2
0 + 357128352a4b7c4g2

0 + 46924272a4b7c4g3
1

−944784a5b8c3g3
1 − 4487724a5b8c3g2

0 + 156597948a2b8c4g3
1

+2379456a2b11c2g3
1 + 354780a4b10c2g3

1 + 1738665a4b10c2g2
0

+136048896a6c8g3
1 − 65664a3b12cg3

1 + 1119744a6b6c4g3
1

−3507510600a3b6c5g2
0 − 576318240a3b6c5g3

1 − 68024448a5b5c5g3
1

−510183360a5b5c5g2
0 + 1428513408a2b5c6g3

1 + 11823499368a2b5c6g2
0

+1017532368a4b4c6g3
1 + 5892617808a4b4c6g2

0 − 155520ab13cg3
1

−244944a3b12cg2
0 − 10206a5b11cg2

0 + 1944a5b11cg3
1

+18738216a2b11c2g2
0 + 1793613375b6c6g2

0 − 1836660096a3c9g3
1
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−24794911296a3c9g2
0 + 6198727824c10g3

1 + 4723920b12c2g2
0

−1469664ab13cg2
0 + 1166400b12c2g3

1 + 159432300b9c4g2
0

+15746400b9c4g3
1 + 46656b15g2

0 − 2219297616ab4c7g3
1

+272097792a6b3c6g2
0 + 25194240a6b3c6g3

1 − 3095112384a3b3c7g3
1

−23417416224a3b3c7g2
0 − 3673320192a5b2c7g2

0 − 612220032a5b2c7g3
1

+30993639120a2b2c8g2
0 + 6887475360a2b2c8g3

1 + 1224440064a4bc8g3
1

+16529940864a4bc8g2
0 − 8264970432abc9g3

1 − 12914016300ab4c7g2
0.

The monster above is a weighted homogeneous equation in a, b and c,
where the weights are 1, 2 and 3 respectively, so we may assume that a = 1.
If we can find (b0, c0) such that b0, c0 ∈ Q, satisfying the equation then we
have found a degree 3 cover of E1.

Let h(b, c) equal the right-hand side above, with a = 1. Then H:h = 0
is a genus 0 curve with singular points

(0, 0) ,
(

1
3
,

1
27

)
,∞.

To find a nonsingular point on H, fit a line though the first two singular
points to obtain a third point on H,

P =
(
− 4g3

1

81g2
0

,− 4g3
1

729g2
0

)
.

P is nonsingular for almost all values of g1 and g0, except when

(g1, g0) = (0, λ), (2λ2,−3λ2),

where λ is a rational parameter. For these values of g1 and g0, h becomes
reducible.

Notice that we have considerable choice in choosing a curve C that covers
a given elliptic curve, E1. However, once the covering is fixed E2 is uniquely
determined, and we can find an expression for it using the method outlined.
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