
MATH 252-3 Spring 2004
Vector Calculus

Homework Set 2 Due Wednesday, 21 January 2004

Course Web Site: http://www.math.sfu.ca/∼ralfw/math252/

Problems from Davis and Snider “Introduction to Vector Analysis”:

• Section 1.7 (pp.23–24): 3

• Section 1.8 (pp.29–30): 7, 8, 11, 12, 18

• Section 1.9 (pp.34–35): 20, 24, 25, 28

• Section 1.10 (pp.38–40): 5, 8, 9, 12, 18, 28

• Section 5.7 (pp.315–316): 15

Also, please read the notes and do the Additional Problems on the accompanying pages.

(. . . questions on next page . . . )



1. Abstract Vector Spaces and Inner Products
Let V be a vector space over the real numbers R, containing elements A, B . . . called
“vectors”. This means that the operations of vector addition and scalar multiplication are
defined, satisfying the properties:

• V is closed under addition and scalar multiplication:
If A, B ∈ V , s, t ∈ R, then sA + tB ∈ V ;

• Addition and scalar multiplication are commutative and associative, and scalar mul-
tiplication is distributive over addition.

An inner product for a real vector space satisfies the following properties:

• A ·B ∈ R for A, B ∈ V

• A ·A ≥ 0 for A ∈ V , and A ·A = 0 if and only if A = 0.

• A ·B = B ·A
• A · (B + C) = A ·B + A ·C, (sA) ·B = s(A ·B) for s ∈ R

Given an inner product, we can define the norm (magnitude) of a vector via

|A| =
√

A ·A

(the norm is sometimes written as ‖A‖ to distinguish it from the absolute value of a real
or complex number).

(a) Using just the above properties of V and the inner product, show the Cauchy-Schwarz
inequality,

|A ·B| ≤ |A| |B| .

[Hint: First show that the inequality holds (as an equality) if either A = 0 or B = 0.
For B 6= 0, observe that |A+λB|2 ≥ 0 for every λ ∈ R. Write this as (A+λB) · (A+
λB) and multiply it out; now substitute, successively, λ = |A|/|B| and λ = −|A|/|B|
to obtain the Cauchy-Schwarz inequality.]

(b) Use the Cauchy-Schwarz inequality to prove the triangle inequality,

|A + B| ≤ |A|+ |B| .

[Hint: Square both sides, noting that the left-hand side becomes |A + B|2 = (A +
B) · (A + B); multiply this out and use the Cauchy-Schwarz inequality.]

(c) Prove the reverse triangle inequality

| |A| − |B| | ≤ |A−B| .

[Hint: Apply the triangle inequality to A = (A − B) + B; then reverse the roles of
A and B.]

Comments: You should check that all the above definitions and results make sense in
terms of what you have already learnt about vectors, the dot product and their geometric
interpretation.

The point of these rather abstract calculations is that these important inequalities depend
only on general properties of vector spaces and the inner product. In class we established
these inequalities using the geometric properties of vectors in R2 or R3 — in particular, we
defined the inner (scalar/dot) product by A ·B = |A||B| cos θ, so that the Cauchy-Schwarz
inequality follows from | cos θ| ≤ 1. The present calculations give an alternative derivation,
and show that the same inequalities must hold for other vector spaces with appropriate
inner products defined, for instance for Rn.



2. Linear Independence, the Gram-Schmidt Process, and Orthogonal Transformations
A set of nonzero vectors {a1,a2, . . . ,an} is linearly independent if no nontrivial linear
combination of the vectors vanishes; that is, if the vectorial equation

n∑
i=1

ciai = 0

has the unique solution c1 = c2 = · · · = cn = 0. Equivalently, none of the vectors can
be expressed as a linear combination of the others; for instance, there are no solutions of
an = c′1a1 + · · ·+ c′n−1an−1. For vectors in R3, linear independence of a1, a2 and a3 means
that the three vectors are not coplanar, that is, that a3 does not lie in the plane defined
by the vectors a1 and a2 (assumed non-parallel).

Given a set of linearly independent vectors {a1,a2, . . . ,an}, we may successively construct
a set of mutually orthogonal vectors {b1,b2, . . . ,bn} (spanning the same subspace) using
the Gram-Schmidt process. The idea is as follows:

• Choose b1 = a1 (or any nonzero multiple of a1).

• Next, we wish to choose b2 as a vector in the subspace spanned by a1 and a2, but
orthogonal to b1 (consequently, span{b1,b2} = span{a1,a2}). Thus define

b2 = a2 − λb1 ,

and find λ using the condition b2 · b1 = 0; this gives λ = a2 · b1/b1 · b1, so that

b2 = a2 −
a2 · b1

b1 · b1
b1 = a2 − projb1

a2.

Note that b2 6= 0, since if it were zero that would imply that a2 and b1 = a1 were
linearly dependent, which they are not.

• Now we can proceed analogously to obtain the remaining orthogonal vectors: At the
kth step in the process (k ≥ 2), we obtain bk by taking ak and subtracting from
it its projection onto the subspace spanned by the previously constructed vectors
b1, . . . ,bk−1:

bk = ak −
ak · b1

b1 · b1
b1 − · · · − ak · bk−1

bk−1 · bk−1
bk−1 = ak −

k−1∑
i=1

ak · bi

bi · bi
bi .

You should verify that this indeed implies that bk · bi = 0 for i = 1, . . . , k − 1, and
that bk 6= 0 since ak 6∈ span{a1, . . . ,ak−1} = span{b1, . . . ,bk−1}.
Once the orthogonal set {b1, . . . ,bn} has been constructed recursively, it is straight-
forward to obtain an orthonormal set of vectors {e′1, . . . , e′n} spanning the same sub-
space, by defining e′k = bk/|bk|, k = 1, . . . , n.

(. . . questions on next page . . . )



In this problem, we will use the Gram-Schmidt process to construct an orthonormal basis
of R3 from a set of three independent vectors, and then compute the coordinates of given
vectors A and B with respect to the new basis:

Consider the vectors in R3, expressed in terms of the basis {i, j,k} = {e1, e2, e3} as

a1 = i− j , a2 = 3i + j− k , a3 = 2j + k.

Also define the vectors A and B in this basis as

A = A1i + A2j + A3k = 4i− 3j + 2k, B = i− k,

where the components may be found as Ai = A·ei, Bi = B·ei, i = 1, . . . , 3. (For simplicity,
you may wish to represent the vectors as column vectors containing the components,
provided you are clear which basis is being used. . . )

(a) Show that the vectors a1, a2 and a3 are linearly independent. Use the Gram-
Schmidt process to obtain a set of three mutually orthogonal vectors {b1,b2,b3}
from {a1,a2,a3}, where b1 = a1. Also normalize the vectors bi to obtain a new
orthonormal basis {i′, j′,k′} = {e′1, e′2, e′3} for R3, where e′i is a unit vector in the
direction of bi, i = 1, . . . , 3.

(b) Use orthogonal projections onto the new basis vectors to find the components A′
i, B′

i

of A and B with respect to the new basis, where

A =
3∑

i=1

A′
ie

′
i

and similarly for B.

(c) By taking appropriate inner products of the old and new basis vectors, compute the
transformation matrix (Jacobian matrix) J of the coordinate transformation, and the
transpose JT . Compute the matrix product to verify that JT J = I.

(d) Now compute the components A′
i, B′

i of A and B with respect to the new basis by
using the transformation matrix J , using A′

i =
∑3

j=1 JjiAj ; your answers should be
the same as obtained in part (b). Next, use the matrix J and the new coordinates
A′

i, B′
i to recompute the old coordinates Ai, Bi, and verify that you have found the

values you started with.

(e) Lastly, we will confirm that the dot product A · B defines a scalar: compute A · B
in both the old and the new coordinate system, and verify that your answers are the
same.


