
MATH 252-3 Spring 2004
Vector Calculus

Homework Set 7 Due Wednesday, 3 March 2004

Course Web Site: http://www.math.sfu.ca/∼ralfw/math252/

Problems from Davis and Snider “Introduction to Vector Analysis”:

• Section 3.10 (pp.169–170): 2, 8, 9, 10, 12, 13, 16 (use the result of problem 2)

• Section 5.8 (pp.326–329): 8, 10

Notes:

1. Compare the ease of calculating the divergence of the inverse-square force field F(R) = R/R3

in spherical coordinates (problem 13 of Section 3.10, for n = −2) with the same calculation
in Cartesian coordinates (problem 4 of Section 3.4; see note 1 of Homework Set 5).

Extra problems:

1. Maxwell’s Equations and Electromagnetic Waves
In this problem, we will demonstrate the usefulness of vector identities by investigating the
differential form of Maxwell’s Equations, which form the basis of the theory of electromag-
netism: their solutions describe the phenomenology of electrostatics, magnetostatics, and
dynamic phenomena such as electromagnetic waves.

Maxwell’s equations are a system of linear partial differential equations for the electric field
E and magnetic field B. In SI units (MKS units: that is, using the metre, kg, second, and
Ampere as basic units), in the absence of magnetic or polarizable media

∇ ·E =
ρ

ε0
(1)

∇ ·B = 0 (2)

∇×E = −∂B
∂t

(3)

∇×B = µ0J + µ0ε0
∂E
∂t

(4)

Here ρ is the charge density (charge per unit volume: units C/m3) and J is the current density
(current per unit area: units A/m2, where C = Coulomb, A = Ampere = Coulomb/second).
Also, ε0 = permittivity of free space = 8.8542×10−12 C2 N−1 m−2, (N = Newtons = kg m s−2)
and µ0 = permeability of free space = 4π × 10−7NA−2.

The first equation (1) above is the differential form of Gauss’ Law for electricity; (2) is
Gauss’ Law for magnetism (no magnetic monopoles); (3) represents Faraday’s Law of induc-
tion, while equation (4) is Ampère’s Law. [In dielectric, magnetic or polarizable materials,
Maxwell’s equations are modified to take into account the electric permittivity, magnetic
permeability and polarization of the medium.]

The mathematical and physical consequences of Maxwell’s equations are profound, and
represent a major scientific achievement of the 19th century. For now, we will explore how
vector identities can be used to deduce the conservation of charge and the existence of
electromagnetic waves, and study some basic properties of these waves.



(a) From Maxwell’s equations (1) and (4), derive the continuity equation

∂ρ

∂t
+∇ · J = 0,

which represents the conservation of charge (where ρ is charge density, and J is the
current density, or charge flux density).
[Hint: Take ∂/∂t of (1); use the fact that partial derivatives with respect to space and
time variables commute (equality of mixed partial derivatives), so that ∂/∂t(∇ · E) =
∇ · (∂E/∂t); substitute for ∂E/∂t in (4) and use a vector identity.]

(b) Maxwell’s equations in a vacuum, in the absence of any charges or currents (ρ = 0,
J = 0), are given by:

∇ ·E = 0 (5)
∇ ·B = 0 (6)

∇×E = −∂B
∂t

(7)

∇×B = µ0ε0
∂E
∂t

(8)

Show that the electric field E satisfies the wave equation

∂2E
∂t2

= c2∇2E , (9)

where c2 = 1/µ0ε0. Similarly, verify that the magnetic field B also satisfies (9).
(This vector equation means that each component Ei, Bi of E and B satisfies the wave
equation ∂2u/∂t2 = c2∇2u.)

[Hint: Take ∂/∂t of (8), commute the spatial and temporal derivatives, and substitute
from (7); use a suitable vector identity.]

The constant c = 1/
√

µ0ε0 ≈ 2.99× 108m s−2 is the speed of light! By this calculation,
Maxwell realized that light is an electromagnetic wave, propagating at speed c.

We will explore some of the details of Maxwell’s calculation. To see why (9) is a wave
equation, assume single-frequency solutions to (5)–(8) for the electric and magnetic
field of the form

E = [A cos(ωt− k ·R) + B sin(ωt− k ·R)]uE , (10)
B = [C cos(ωt− k ·R) + D sin(ωt− k ·R)]uB . (11)

Here: uE and uB are suitable constant unit vectors indicating the direction of the fields
E and B, respectively;
R = x̂i + ŷj + zk̂ is the position vector;
ω is a constant, the angular frequency of the wave (ω = 2πν, where ν is the frequency);
k = k1̂i+k2̂j+k3k̂ is a constant vector, whose direction indicates the direction of prop-
agation of the wave, and whose magnitude is |k| = 2π/λ, where λ is the wavelength;
and A, B, C and D are constants.
[Note: you should be careful to distinguish between k, the wave propagation vector
with magnitude 2π/λ, and k̂, the unit vector parallel to the z-axis.]

(c) Show that E and B satisfy the wave equation (9) provided c = ω/|k|.
[You need consider only E. Compute ∂2E/∂x2 to show that ∂2E/∂x2 = −k2

1E; by a



similar calculation for the y and z derivatives, show that ∇2E = −|k|2E. Similarly,
compute ∂2E/∂t2, and show ∂2E/∂t2 = −ω2E. Thus show that the expression (10) for
E satisfies the wave equation (9) provided ω and |k| are related by ω = c|k|.]

(d) Explain why the fields E and B defined in (10)–(11) represent waves propagating in
the direction of k, with wave speed c = νλ = ω/|k|.
[You need consider only E. Show that E takes the same value at time t = 0, position
vector R0, and at time t, position vector R, provided that ωt−k · (R−R0) = 0. Thus
show that if R − R0 is parallel to k, then E is constant along points with position
vectors R = R(t) satisfying |R−R0| = ωt/|k| = ct; and hence interpret c as the wave
speed.]

(e) Show that ∇ ·E = 0 implies k · uE = 0. Thus show that (5) and (10) imply that that
the electric field vector E is perpendicular to the direction of propagation, k · E = 0.
Similarly, show that k is perpendicular to uB and thus to B.

(f) Substitute E and B into (7) to show that k × uE is parallel to uB, and thus that
uE · uB = 0; thus the electric and magnetic fields are mutually perpendicular.
Also use (7) to find a relation between A and C, and a relation between B and D.
(You would obtain the same result using (8) instead of (7)).

In summary, for an electromagnetic wave, such as light (or radio waves, infrared or
ultraviolet radiation, X-rays or gamma rays) k, E and B are mutually perpendicular
vectors; the changing electric field induces a changing magnetic field (according to (8))
which in turn induces an electric field (by (7)), and together these fields propagate at
speed c in the direction of k while remaining mutually perpendicular to each other and
to k.

For more information on the theory of electromagnetism, see Appendix D of the text-
book by Davis and Snider, the book by Shey in the library reserves, or any one of many
suitable physics references.

2. Vector Differential Operators and Linear Orthogonal Transformations
Consider the scalar and vector fields (expressed in Cartesian coordinates relative to the
standard basis {e1, e2, e3} = {̂i, ĵ, k̂})

f(x, y, z) = x2 + yz + z2 ,

G(x, y, z) = G1(x, y, z)̂i + G2(x, y, z)̂j + G3(x, y, z)k̂ = î + (y − 2x)̂j− 2xzk̂.

(a) Compute grad f , div G, curl G and ∇2f (in the {̂i, ĵ, k̂} coordinate system).

We will now consider a linear orthogonal transformation to a new Cartesian coordinate
system. Define the new basis vectors {e′1, e′2, e′3} = {̂i′, ĵ′, k̂′} (with respect to the old
coordinate system) by

î′ =
1
2
(̂i +

√
3k̂), ĵ′ =

1
2
(−
√

3̂i + k̂), k̂′ = −ĵ. (12)

This new basis is obtained by first rotating the {̂i, ĵ, k̂} basis by 90◦ counterclockwise
about the x-axis, and then rotating by 60◦ counterclockwise about the (new) z-axis.

(b) Verify that {̂i′, ĵ′, k̂′} forms a right-handed orthonormal coordinate system, that is, the
vectors are pairwise mutually orthogonal, have norm 1, and î′× ĵ′ = k̂′. Also write down
the transformation matrix (Jacobian matrix) J for the coordinate transformation, and
its transpose JT .

(c) Invert the formulas (12), that is, write the old basis vectors {̂i, ĵ, k̂} in terms of the new
basis vectors {̂i′, ĵ′, k̂′}.



(d) Consider a point P whose position vector R has coordinates (x, y, z) with respect to the
old basis {̂i, ĵ, k̂}, and coordinates (x′, y′, z′) with respect to the new basis {̂i′, ĵ′, k̂′};
that is,

R = x̂i + ŷj + zk̂ = x′̂i′ + y ′̂j′ + z′k̂′.

Write the formulas for the old coordinates (x, y, z) in terms of the new coordinates
(x′, y′, z′).

Now we will obtain the expressions for the scalar field f and the vector field G in
terms of the new coordinate system. Note that the fields stay the same; for instance,
at a given point P , the value of f is unchanged. However, the coordinates of the point
change as we change the basis, and thus the formula for f will change.

(e) Express the function f(x, y, z) in the new coordinate system, as f ′(x′, y′, z′), by substi-
tuting the expressions for the old coordinates in terms of the new.
[Answer: f ′(x′, y′, z′) = x′2 + y′2 −

√
3

2 x′z′ − 1
2y′z′. ]

(f) Express the vector field G with respect to the new basis (you will need to find the
components G′

i(x
′, y′, z′), i = 1, 2, 3 by expressing the old coordinates in terms of the

new, and also by finding the new components G′
i in terms of the old components Gi).

[Answer:

G =

[
1
2
− 3

4
x′2 +

√
3

2
x′y′ +

3
4
y′2

]
î′

+

[
−
√

3
2

−
√

3
4

x′2 +
1
2
x′y′ +

√
3

4
y′2

]
ĵ′ +

[
x′ −

√
3y′ + z′

]
k̂′ . ]

Let us now compute the vector differential operators in the new coordinate system:
(g) Compute grad f in the new coordinate system; that is,

grad f =
∂f ′

∂x′
î′ +

∂f ′

∂y′
ĵ′ +

∂f ′

∂z′
k̂′.

[Answer: grad f =
[
2x′ −

√
3

2 z′
]
î′ +

[
2y′ − 1

2z′
]
ĵ′ −

[√
3

2 x′ + 1
2y′

]
k̂′. ]

(h) Compute div G in the new coordinate system.
[Answer: div G = 1− x′ +

√
3y′. ]

(i) Compute curl G in the new coordinate system.
[Answer: curl G = −

√
3 î′ − ĵ′ −

[√
3x′ + y′

]
k̂′. ]

(j) Compute the Laplacian ∇2f in the new coordinate system.
[Answer: 4. ]

Lastly, we will verify that the expressions for div G and ∇2f represent the same scalar
field, and grad f and curl G the same vector field, in the old and new coordinate
systems; that is, that grad, div, and curl truly represent vector operations (coordinate-
free). This is of course consistent with the fact that these operations were defined
without reference to a coordinate system: grad f gives the maximum rate of change
of f with respect to distance, in the direction of that maximum; div G is the flux per
unit volume, and the component of curl G in a particular direction is the circulation
per unit area for a surface with normal in that direction.

(k) Transform the fields grad f , div G and curl G from part (a) (which were obtained
by first differentiating with respect to the old coordinate system) to the new basis
{̂i′, ĵ′, k̂′} with coordinates (x′, y′, z′), and confirm that the answers agree with those
of parts (g), (h) and (i) (which were found by first transforming to the new basis, and
then differentiating in the new coordinate system).


