{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 3" -1 5 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Ti mes" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{SECT 0 {PARA 5 "" 0 "" {TEXT -1 27 "Double and triple integrals" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 234 "Examples from the lecture notes: (with lots of intermediate step s given, which would be obtained when doing the calculation by hand, a nd are shown in the notes; to obtain the final answer, only the last c alculation is really needed)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 78 "Surface integral over tr iangle (projected onto x-y plane), from p.149 of notes" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "int(12*x+3,y);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&*&\"#7\"\"\"%\"xGF'F'\"\"$F'F'%\"yGF'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "expand(int(12*x+3,y=0..4-2*x/3));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*&\"#Y\"\"\"%\"xGF&F&*&\"\")F&)F' \"\"#F&!\"\"\"#7F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "int(% ,x); " }{TEXT -1 72 "The symbol % indicates the result of the previou sly evaluated expression" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*&\"#B\" \"\")%\"xG\"\"#F&F&*&#\"\")\"\"$F&*$)F(F-F&F&!\"\"*&\"#7F&F(F&F&" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "int(int(12*x+3,y=0..4-2*x/3) ,x=0..6); " }{TEXT -1 54 "\nFor the final answer, only this calculatio n is needed" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"$C$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 83 "I ntegral over the base of the tetrahedron in the x-y plane, from p.150 \+ of the notes" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "int(2*x^2+3 ,y);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&*&\"\"#\"\"\")%\"xGF&F'F' \"\"$F'F'%\"yGF'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "expand( int(2*x^2+3,y=0..4-2*x/3));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,**&\" \")\"\"\")%\"xG\"\"#F&F&*&#\"\"%\"\"$F&*$)F(F-F&F&!\"\"\"#7F&*&F)F&F(F &F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "int(%,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,**&#\"\")\"\"$\"\"\"*$)%\"xGF'F(F(F(*&#F(F' F(*$)F+\"\"%F(F(!\"\"*&\"#7F(F+F(F(*$)F+\"\"#F(F1" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 41 "-int(int(2*x^2+3,y=0..4-2*x/3),x=0..6); " } {TEXT -1 53 "\nOnly this calculation is needed for the final answer" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#!$!=" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 "Volume integr al, from p.154 of notes" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 " int(6*x+18*z,z);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*(\"\"'\"\"\"%\" xGF&%\"zGF&F&*&\"\"*F&)F(\"\"#F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "expand(int(6*x+18*z,z=0..2-x/3-y/2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,**$)%\"xG\"\"#\"\"\"!\"\"\"#OF(*&\"#=F(%\"yGF(F)* &#\"\"*\"\"%F(*$)F-F'F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "int(%,y);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,**&)%\"xG\"\"#\"\"\"% \"yGF(!\"\"*&\"#OF(F)F(F(*&\"\"*F()F)F'F(F**&#\"\"$\"\"%F(*$)F)F2F(F(F (" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "expand(int(int(6*x+18* z,z=0..2-x/3-y/2),y=0..4-2*x/3));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#, (\"#[\"\"\"*&\"\"%F%)%\"xG\"\"#F%!\"\"*&#F'\"\"*F%*$)F)\"\"$F%F%F%" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "int(%,x);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#,(*&\"#[\"\"\"%\"xGF&F&*&#\"\"%\"\"$F&*$)F'F+F&F&!\" \"*&#F&\"\"*F&*$)F'F*F&F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "int(int(int(6*x+18*z,z=0..2-x/3-y/2),y=0..4-2*x/3),x=0..6);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#\"$W\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 83 "The iterated \+ integral can be evaluated in a different order giving the same result: " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "int(int(int(6*x+18*z,x= 0..6-3*y/2-3*z),y=0..4-2*z),z=0..2);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#\"$W\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}}{MARK "2 \+ 9 0 0" 58 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }