
MATH 252-3 Spring 2004
Vector Calculus

Final Exam Wednesday, 14 April 2004

Attempt all of the following questions; there are 12 problems, for a total of 120 points. The
total time available is three hours (180 minutes).

1. (8 points)
Consider a particle whose trajectory traces out a space curve R = R(t) as a function of
time t. Derive the formula

a(t) =
d2s

dt2
T + k

(
ds

dt

)2

N

for the acceleration a, where T is the unit tangent, N is the unit principal normal to the
curve, s is the distance (arc length) travelled, and k is the curvature.
Interpret this result.

2. (8 points)
For which value of β is the vector field

F = (3 + 2xy2)i + (2x2y + βz)j + 2yk

conservative? For this value of β, compute the line integral∫ π/4

0
F · dR

along the helical path
R(t) = cos 2t i + sin 2t j− 5tk .

3. (14 points)
Consider the region V bounded by the cylindrical surface x2 +y2 = 4 and the planes z = 0
and z = 3; and let S = ∂V be the closed surface bounding V , with the usual outwards
orientation. Define the vector field F by

F = −x i + (2z − 1)y j + z2 k .

Evaluate ∫∫
S
F · n dS

(a) by direct computation of the surface integral;

(b) using the Divergence Theorem.
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4. (8 points)
Let S be the portion of the paraboloid z = a2−x2−y2 above the x-y plane (with n·k > 0);
and define the vector field

F = 3y i− 2y(1 + z2) j + arctanx2 k .

Evaluate the flux of curl F through the surface S, that is,
∫∫

S(∇× F) · dS, using one or
two applications of Stokes’ Theorem.

5. (8 points)
Let V be the region bounded by the cone z2 = x2+y2 and the unit sphere x2+y2+z2 = 1;
and let S be the surface enclosing V . Let F be the vector field

F = (x+ yz2e−yz)i + (yz − x3exz)j + (−z + sinx cos y)k .

Evaluate ∫∫
S
F · dS .

6. (10 points)
Let St be the square with corners (0, 0, t), (0, 1, t), (1, 0, t) and (1, 1, t), with boundary Ct,
and let F be the vector field

F(R, t) = xztk .

Evaluate the surface integral

Φ(t) =
∫∫

St

F(R, t) · dS ,

and verify the flux transport theorem

dΦ
dt

=
∫∫

St

(
∂F
∂t

+ (∇ · F)v
)
· dS +

∮
Ct

(F× v) · dR ,

where v(R, t) is the velocity of points of St.

7. (8 points)
State Green’s Theorem in the Plane.
Prove the theorem for the case of a simply connected, convex region D (in which each
vertical and horizontal line intersects the boundary in two points).
Indicate how you would prove Green’s Theorem for more general regions in the plane.
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8. (10 points)
Consider the torus (with major radius A, minor radius a, toroidal angle u, poloidal angle
v):

x = A cosu+ a cosu cos v ,
y = A sinu+ a sinu cos v ,
z = a sin v

(0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π , 0 < a < A) .

Show that the surface element is

dS = [a cosu cos v(A+ a cos v) i + a sinu cos v(A+ a cos v) j
+a sin v(A+ a cos v)k] du dv

= a(A+ a cos v) [cosu cos v i + sinu cos v j + sin v k] du dv ,

and thus show that the element of area on the torus is

dS = a(A+ a cos v) du dv .

Integrate to obtain the formula for the surface area of the torus: 4π2Aa.

9. (16 points)
Consider the transformation from the Cartesian coordinates (x, y, z) to curvilinear coor-
dinates (u1, u2, u3) given by

x = αu1u2 ,

y = u3 ,

z = u2
1 − u2

2.

(a) For which value(s) of the constant α does the transformation describe an orthogonal
curvilinear coordinate system?

(b) For which value(s) of α found in (a) is (u1, u2, u3) a right-handed coordinate system?

(c) Compute the scale factors h1, h2 and h3 and unit vectors e1, e2, e3 for any value of
α found in (b), and give the element of volume dV in this coordinate system.

(d) Find the divergence of the vector field F = u3e1.

10. (8 points)
Let φ and ψ be two sufficiently smooth (twice continuously differentiable) scalar fields in
a region V with boundary S = ∂V .

(a) By applying the Divergence Theorem to the vector field F = ψ∇φ, prove Green’s
first formula ∫∫∫

V
ψ∇2φdV =

∫∫
S
ψ∇φ · dS−

∫∫∫
V
∇ψ · ∇φdV .

Hence show that for any sufficiently smooth scalar field φ,∫∫∫
V
φ∇2φdV =

∫∫
S
φ∇φ · dS−

∫∫∫
V
|∇φ|2 dV . (1)
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(b) Suppose φ is a harmonic function, that is, it satisfies Laplace’s equation ∇2φ = 0 in
V ; and also suppose that φ vanishes on the boundary, φ = 0 on S = ∂V . Use the
formula (1) from (a) to show that in this case, the gradient ∇φ must vanish identically
in V .
Hence deduce that such a function φ is constant (and consequently identically zero,
from the boundary values φ = 0 on S).

11. (12 points)
Let R = xi + yj + zk be the usual position vector, and let A = A1i + A2j + A3k be a
constant vector.

(a) Demonstrate the vector identity

∇× (A×R) = 2A

in two ways:
i. using tensor notation; and
ii. by appropriate use of vector identities given on the formula sheet.

(b) Let S be a smooth oriented surface with normal n, and let its boundary be C = ∂S
with unit tangent T. Prove that∮

C
(R×T) ds = 2

∫∫
S
n dS .

[Hint: Take the dot product of both sides with a constant vector A.]

12. (10 points)

(a) Faraday’s Law of Induction states that∮
C

E · dR = − d

dt

∫∫
S
B · dS ,

where E and B are the electric and magnetic fields, and the closed curve C is the
boundary of the arbitrary surface S in a simply connected region. Deduce that∫∫

S

(
∇×E +

∂B
∂t

)
· dS = 0 ,

and hence obtain the third Maxwell equation

∇×E = −∂B
∂t

. (2)

(b) Use another of Maxwell’s equations (in a simply connected domain) to explain why
there exists a vector potential A so that B = ∇×A.
[Note that here the vector field A is not constant; the use of A for the magnetic
potential is conventional notation.]

(c) Substitute B = ∇×A into equation (2) (and interchange space and time derivatives)
to show that there must exist a scalar potential function φ so that

E +
∂A
∂t

= −∇φ ;

that is, we can write the electric field E in terms of scalar and vector potentials as
E = −∇φ− ∂A/∂t.

4



MATH 252-3 Spring 2004
Vector Calculus

Formula Sheet

• Vector Identities

A× (B×C) = (A ·C)B− (A ·B)C (A×B)×C = (A ·C)B− (B ·C)A
(A×B)× (C×D) = [A,C,D]B− [B,C,D]A [A,B,C] = A ·B×C

∇(φ1φ2) = φ1∇φ2 + φ2∇φ1 ∇ · (φF) = φ∇ · F + F · ∇φ

∇× (φF) = φ∇× F +∇φ× F ∇f(φ) =
df

dφ
∇φ

∇ ·R = 3 ∇×R = 0

F · ∇R = F ∇(A ·R) = A

∇ · (F×G) = G · (∇× F)− F · (∇×G)
∇× (F×G) = (G · ∇)F− (F · ∇)G + (∇ ·G)F− (∇ · F)G

∇(F ·G) = (F · ∇)G + (G · ∇)F + F× (∇×G) + G× (∇× F)
∇× (∇× F) = ∇(∇ · F)−∇2F

Vector potential: G(R) =
∫ 1

0

tF× dr
dt
dt , r(t) = R0 + t(R−R0)

• Frenet Formulas
dT
ds

= kN ,
dN
ds

= −kT + τB ,
dB
ds

= −τN

• Flux Transport Theorem

dΦ
dt

=
d

dt

∫∫
St

F(R, t) · dS =
∫∫

St

(
∂F
∂t

+ (∇ · F)v
)
· dS +

∮
Ct

F× v · dR

• Reynolds Transport Theorem

d

dt

∫∫∫
Vt

f(R, t) dV =
∫∫∫

Vt

(
∂f

∂t
+∇ · (fv)

)
dV =

∫∫∫
Vt

(
Df

Dt
+ f∇ · v

)
dV

• General Orthogonal Curvilinear Coordinates

Displacement vector: dR = h1 du1 e1 + h2 du2 e2 + h3 du3 e3

Arc length: ds =
(
h2

1 du
2
1 + h2

2 du
2
2 + h2

3 du
2
3

)1/2

Volume element: dV = h1h2h3 du1 du2 du3

Gradient: ∇f =
1
h1

∂f

∂u1
e1 +

1
h2

∂f

∂u2
e2 +

1
h3

∂f

∂u3
e3

Divergence: ∇ · F =
1

h1h2h3

[
∂

∂u1
(F1h2h3) +

∂

∂u2
(F2h3h1) +

∂

∂u3
(F3h1h2)

]

Curl: ∇× F =
1

h1h2h3

∣∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂

∂u1

∂

∂u2

∂

∂u3
F1h1 F2h2 F3h3

∣∣∣∣∣∣∣∣
Laplacian: ∇2f =

1
h1h2h3

[
∂

∂u1

(
h2h3

h1

∂f

∂u1

)
+

∂

∂u2

(
h3h1

h2

∂f

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂f

∂u3

)]
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• Cylindrical Coordinates

Definitions: x = ρ cos θ , y = ρ sin θ , z = z

Displacement vector: dR = dρ eρ + ρ dθ eθ + dz ez

Arc length: ds =
(
dρ2 + ρ2 dθ2 + dz2

)1/2

Volume element: dV = ρ dρ dθ dz

Gradient: ∇f =
∂f

∂ρ
eρ +

1
ρ

∂f

∂θ
eθ +

∂f

∂z
ez

Divergence: ∇ · F =
1
ρ

∂(ρFρ)
∂ρ

+
1
ρ

∂Fθ

∂θ
+
∂Fz

∂z

Curl: ∇× F =
1
ρ

∣∣∣∣∣∣∣∣
eρ ρeθ ez

∂

∂ρ

∂

∂θ

∂

∂z
Fρ ρFθ Fz

∣∣∣∣∣∣∣∣
Laplacian: ∇2f =

1
ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1
ρ2

∂2f

∂θ2
+
∂2f

∂z2

• Spherical Coordinates

Definitions: x = r sinφ cos θ , y = r sinφ sin θ , z = r cosφ

Displacement vector: dR = dr er + r dφ eφ + r sinφdθ eθ

Arc length: ds =
(
dr2 + r2 dφ2 + r2 sin2 φdθ2

)1/2

Volume element: dV = r2 sinφdr dφ dθ

Gradient: ∇f =
∂f

∂r
er +

1
r

∂f

∂φ
eφ +

1
r sinφ

∂f

∂θ
eθ

Divergence: ∇ · F =
1
r2

∂

∂r

(
r2Fr

)
+

1
r sinφ

∂

∂φ
(Fφ sinφ) +

1
r sinφ

∂Fθ

∂θ

Curl: ∇× F =
1

r2 sinφ

∣∣∣∣∣∣∣∣
er reφ (r sinφ)eθ

∂

∂r

∂

∂φ

∂

∂θ
Fr rFφ (r sinφ)Fθ

∣∣∣∣∣∣∣∣
Laplacian: ∇2f =

1
r2

∂

∂r

(
r2
∂f

∂r

)
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂f

∂φ

)
+

1
r2 sin2 φ

∂2f

∂θ2

• Maxwell’s Equations

Maxwell’s equations for the electric field E and magnetic field B in free space, in the absence
of magnetic or polarizable media, in SI (mks) units; with charge density ρ, current density J,
and universal constants ε0 (permittivity of free space) and µ0 (permeability of free space) (where
ε0µ0 = c−2):

∇ ·E =
ρ

ε0
∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E
∂t

Also: Gauss’ Law:
∫∫

S

E · dS =
Q

ε0
(Q : total enclosed charge)
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