MATH 252-3 Spring 2004
Vector Calculus

Final Exam Wednesday, 14 April 2004

Attempt all of the following questions; there are 12 problems, for a total of 120 points. The
total time available is three hours (180 minutes).

1. (8 points)
Consider a particle whose trajectory traces out a space curve R = R(t) as a function of

time ¢t. Derive the formula
a(t) _ s ()
dt? dt

for the acceleration a, where T is the unit tangent, N is the unit principal normal to the
curve, s is the distance (arc length) travelled, and & is the curvature.
Interpret this result.

2. (8 points)
For which value of 3 is the vector field

F = (34 2zy?)i+ (22%y + B2)j + 2yk

conservative? For this value of 3, compute the line integral

w/4
/ F.-dR
0

R(t) = cos2ti+sin2tj— 5tk .

along the helical path

3. (14 points)
Consider the region V bounded by the cylindrical surface 22 +4? = 4 and the planes z = 0
and z = 3; and let S = 0V be the closed surface bounding V', with the usual outwards
orientation. Define the vector field F by

F=—zi+(22—1)yj+2%k.

//SF-ndS

(a) by direct computation of the surface integral;

Evaluate

(b) using the Divergence Theorem.



4. (8 points)
Let S be the portion of the paraboloid z = a? —x? —y? above the -y plane (with n-k > 0);
and define the vector field
F =3yi—2y(1 + 2%)j + arctanz’k .

Evaluate the flux of curl F through the surface S, that is, [ (V x F) - dS, using one or
two applications of Stokes’” Theorem.

5. (8 points)
Let V be the region bounded by the cone 22 = 22 +1? and the unit sphere 22+ 422 = 1;
and let S be the surface enclosing V. Let F be the vector field

F = (z+yz2e ¥)i+ (yz — 23e")j+ (—2z +sinz cos y)k .

//SF-dS.

Evaluate

6. (10 points)
Let Sy be the square with corners (0,0,t), (0,1,¢), (1,0,¢) and (1,1,¢), with boundary C,
and let F be the vector field
F(R,t) =zztk .

0 ://S F(R,1)-dS |

and verify the flux transport theorem

G L (GrwE)asef ®avm.

where v(R, ) is the velocity of points of S;.

Evaluate the surface integral

7. (8 points)
State Green’s Theorem in the Plane.
Prove the theorem for the case of a simply connected, convex region D (in which each
vertical and horizontal line intersects the boundary in two points).
Indicate how you would prove Green’s Theorem for more general regions in the plane.



8. (10 points)
Consider the torus (with major radius A, minor radius a, toroidal angle u, poloidal angle

v):

r = Acosu-+ acosucosv ,

Asinu + asinucosv ,
z = asinv
0<u<2r, 0<ov<2m, O0<a<A).

Show that the surface element is

dS = J[acosucosv(A+acosv)i+ asinucosv(A+ acosv)j
+asinv(A + acosv) k] du dv

= a(A+acosv)[cosucosvi+sinucosvj+sinvk] dudv ,
and thus show that the element of area on the torus is
dS = a(A+ acosv)dudv .

Integrate to obtain the formula for the surface area of the torus: 472Aa.

9. (16 points)
Consider the transformation from the Cartesian coordinates (z,y,2) to curvilinear coor-
dinates (uq,ug,us) given by

r = Quiug ,
= us,
z = ’LL% — u%

(a) For which value(s) of the constant o does the transformation describe an orthogonal
curvilinear coordinate system?

(b) For which value(s) of a found in (a) is (u1,u2,us3) a right-handed coordinate system?

(c) Compute the scale factors hi, he and hz and unit vectors e, eg, es for any value of
a found in (b), and give the element of volume dV in this coordinate system.

(d) Find the divergence of the vector field F = uge;.

10. (8 points)
Let ¢ and 1 be two sufficiently smooth (twice continuously differentiable) scalar fields in
a region V with boundary S = 9V.

(a) By applying the Divergence Theorem to the vector field F = V¢, prove Green’s

first formula
//Vw%dvz//swgs.dS—//Vw.wdv.

Hence show that for any sufficiently smooth scalar field ¢,

[ owo[fosom [[[mora.



(b) Suppose ¢ is a harmonic function, that is, it satisfies Laplace’s equation V2¢ = 0 in

V'; and also suppose that ¢ vanishes on the boundary, ¢ = 0 on S = 9V. Use the
formula (1) from (a) to show that in this case, the gradient V¢ must vanish identically
inV.

Hence deduce that such a function ¢ is constant (and consequently identically zero,
from the boundary values ¢ =0 on S).

11. (12 points)
Let R = i + yj + zk be the usual position vector, and let A = Aji 4+ Asj + Ask be a
constant vector.

(a) Demonstrate the vector identity

Vx(AxR)=2A

in two ways:
i. using tensor notation; and

ii. by appropriate use of vector identities given on the formula sheet.

(b) Let S be a smooth oriented surface with normal n, and let its boundary be C' = 95

with unit tangent T. Prove that

%C(RXT)ds:Q//SndS.

[Hint: Take the dot product of both sides with a constant vector A.]

12. (10 points)

(a)

Faraday’s Law of Induction states that

]{ dR——/ B-ds,
C

where E and B are the electric and magnetic fields, and the closed curve C is the
boundary of the arbitrary surface S in a simply connected region. Deduce that

// (v E+>-dS:O,

and hence obtain the third Maxwell equation

0B
VXE=——. 2
ot 2)
Use another of Maxwell’s equations (in a simply connected domain) to explain why
there exists a vector potential A so that B =V x A.
[Note that here the vector field A is not constant; the use of A for the magnetic

potential is conventional notation.]

Substitute B = V x A into equation (2) (and interchange space and time derivatives)
to show that there must exist a scalar potential function ¢ so that

OA
B+ =V

that is, we can write the electric field E in terms of scalar and vector potentials as

E =—-V¢—0A/ot.
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Formula Sheet

AxBxC)=(A-C)B—-(A-B)C (AxB)xC=(A-C)B- (B:-C)A
(AxB)x (CxD)= [ACD] - [B,C,DJ]A [A,B,C]=A -BxC
V(p1¢2) = $1V2 + $2V 1 V- (¢F)=¢V -F+F-Vo
V x (¢F) = ¢V x F+ Vo x F Vf(gb)fd—‘;Vd)
V-R=3 VxR=0
F-VR=F V(A-R)=A
V- FxG) = G- (VxF)-F-(VxGQ)
Vx(FxG) = (G-V)F-(F-V)G+(V-G)F—(V-F)G
VF-G) = (F~V)G+(G~V)F+FX(VXG)+GX(VXF)
Vx(VxF) = V(V-F)-VF
1
Vector potential: G(R):/ tFx@dt, r(t) = Ro+t(R —Ry)
0 dt
o Frenet Formulas JT N B
— = kN | — =—kT+7B, — =—7N
ds ds ds

Fluz Transport Theorem

z dt/ FiR,?) d5 = //s(

Reynolds Transport Theorem

//Vth )dV =

F) )-ds+j{ F xv-dR
Cy

I G m) v = fJf (5t vre-v) v

General Orthogonal Curvilinear Coordinates

Displacement vector:

Arc length:

Volume element:

dR = h1 dU1 e; + h2 dUQ e + h3 d’LL3 €3

ds = (h? du? + h2 du2 + h3 du2) "
dV = hlhghg dU1 dUQ dU3

- 1 of 1 of 1 of
Gradient: Vf= Iy O e + Ty Oty ey + I 9 es
Divergence: V-F= ! 0 (th)—i—i(th) 0 (F3hihs)
g : _h1h2h3 8u1 1n2hs3 Dy 2h3ny 8u3 3N1n2
h161 h282 h3e3
1 0 0 0
Curl: VxF= - = =
b h1h2h3 8u1 6u2 8u3
Fihy Fshe  Fshg
o sy L [0 (hahs 0P\ 0 (hshy O] 0 (hahs 0f
Lapla(HaH- v f B h1h2h3 8U1 h1 811,1 + 8u2 hg 8u2 + 8U3 h3 8U3



e (Cylindrical Coordinates

Definitions: r=pcosf, y=psinf, z==z
Displacement vector: dR =dpe,+pdfieg+dze,
Arc length: ds = (dp® + p* do? + d=2)"/*
Volume element: dV = pdpdf dz
1
Gradient: Vf= gi + f% + 8—JZC e,
Divergence: V-F= ;5)((,(0)? %% 88FZZ
e, peg e,
Curl: VXxF=- g 2 2
dp 00 0z
F, pFy F,
) 10 af 1 0%f  0%f
) 2
Laplacian: Vof = 0 op ( 8/)) +— EXZR )
e Spherical Coordinates
Definitions: r=rsingcost, y=rsingsinfd, z=rcose
Displacement vector: dR =dre,+rdpey,+rsingpdfey
Arc length: ds = (dr2 + 72 d¢? + r? sin? ¢d02)1/2
Volume element: AV = r?sin ¢ dr dep do
— _of 1 8f 1 of
Gradient: Vf—a e, + — 8¢ rsin¢80e9
10 1 0 1 OFy
Di : -F=—-— (r’F, F, —
tvergence v r2 Or (r°F) + rsin ¢ O¢ (Fysin ) + rsin¢g 00
e, res (rsing)eg
Curl: VxF= # 2 2 g
r’sing | Or 0¢ Bl
F. rFy (rsing)Fy
) 1 0 [ ,0f 1 o (. ,0f 1 0%f
Lapl : 2= — - — —_—
aplacian Vii=e ( 8r> t 2sing 09 < ¢a¢) T e 06

o Mazwell’s Equations

Maxwell’s equations for the electric field E and magnetic field B in free space, in the absence
of magnetic or polarizable media, in ST (mks) units; with charge density p, current density J,
and universal constants €y (permittivity of free space) and o (permeability of free space) (where

oo = CiQ)Z

V- -E= £ V-B=0
€0
0B OE
E = —— B — -
V x y V x Hod + poco—
Also: Gauss’ Law: // E.dS= Q (Q : total enclosed charge)
S €0



