MATH 252-3

Vector Calculus

Homework Set 11 (last set!)

Due by the Final, Tuesday, 19 April 2005

Course Web Site: http://www.math.sfu.ca/~ralfw/math252/

1. Linear Independence, the Gram-Schmidt Process, and Orthogonal Transformations A set of nonzero vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is linearly independent if no nontrivial linear combination of the vectors vanishes; that is, if the vectorial equation

$$\sum_{i=1}^n c_i \mathbf{a}_i = \mathbf{0}$$

has the unique solution $c_1 = c_2 = \cdots = c_n = 0$. Equivalently, none of the vectors can be expressed as a linear combination of the others; for instance, there are no solutions of $\mathbf{a}_n = c'_1 \mathbf{a}_1 + \cdots + c'_{n-1} \mathbf{a}_{n-1}$. For vectors in \mathbb{R}^3 , linear independence of \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3 means that the three vectors are not coplanar, that is, that \mathbf{a}_3 does not lie in the plane defined by the vectors \mathbf{a}_1 and \mathbf{a}_2 (assumed non-parallel).

Given a set of linearly independent vectors $\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n\}$, we may successively construct a set of mutually orthogonal vectors $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\}$ (spanning the same subspace) using the *Gram-Schmidt process*. The idea is as follows:

- Choose $\mathbf{b}_1 = \mathbf{a}_1$ (or any nonzero multiple of \mathbf{a}_1).
- Next, we wish to choose \mathbf{b}_2 as a vector in the subspace spanned by \mathbf{a}_1 and \mathbf{a}_2 , but orthogonal to \mathbf{b}_1 (consequently, span{ $\mathbf{b}_1, \mathbf{b}_2$ } = span{ $\mathbf{a}_1, \mathbf{a}_2$ }). Thus define

$$\mathbf{b}_2 = \mathbf{a}_2 - \lambda \mathbf{b}_1 \; ,$$

and find λ using the condition $\mathbf{b}_2 \cdot \mathbf{b}_1 = 0$; this gives $\lambda = \mathbf{a}_2 \cdot \mathbf{b}_1 / \mathbf{b}_1 \cdot \mathbf{b}_1$, so that

$$\mathbf{b}_2 = \mathbf{a}_2 - \frac{\mathbf{a}_2 \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 = \mathbf{a}_2 - \operatorname{proj}_{\mathbf{b}_1} \mathbf{a}_2.$$

Note that $\mathbf{b}_2 \neq \mathbf{0}$, since if it were zero that would imply that \mathbf{a}_2 and $\mathbf{b}_1 = \mathbf{a}_1$ were linearly dependent, which they are not.

• Now we can proceed analogously to obtain the remaining orthogonal vectors: At the kth step in the process $(k \ge 2)$, we obtain \mathbf{b}_k by taking \mathbf{a}_k and subtracting from it its projection onto the subspace spanned by the previously constructed vectors $\mathbf{b}_1, \ldots, \mathbf{b}_{k-1}$:

$$\mathbf{b}_k = \mathbf{a}_k - \frac{\mathbf{a}_k \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 - \dots - \frac{\mathbf{a}_k \cdot \mathbf{b}_{k-1}}{\mathbf{b}_{k-1} \cdot \mathbf{b}_{k-1}} \mathbf{b}_{k-1} = \mathbf{a}_k - \sum_{i=1}^{k-1} \frac{\mathbf{a}_k \cdot \mathbf{b}_i}{\mathbf{b}_i \cdot \mathbf{b}_i} \mathbf{b}_i$$

You should verify that this indeed implies that $\mathbf{b}_k \cdot \mathbf{b}_i = 0$ for $i = 1, \dots, k - 1$, and that $\mathbf{b}_k \neq \mathbf{0}$ since $\mathbf{a}_k \notin \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_{k-1}\} = \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_{k-1}\}$.

Once the orthogonal set $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ has been constructed recursively, it is straightforward to obtain an *orthonormal* set of vectors $\{\mathbf{e}'_1, \ldots, \mathbf{e}'_n\}$ spanning the same subspace, by defining $\mathbf{e}'_k = \mathbf{b}_k / |\mathbf{b}_k|, k = 1, \ldots, n$.

 $(\dots$ questions on next page $\dots)$

In this problem (which you should study and understand, but **don't need to hand in**), we will use the Gram-Schmidt process to construct an orthonormal basis of \mathbb{R}^3 from a set of three independent vectors, and then compute the coordinates of given vectors **A** and **B** with respect to the new basis:

Consider the vectors in \mathbb{R}^3 , expressed in terms of the basis $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ as

$$\mathbf{a}_1 = \mathbf{i} - \mathbf{j}$$
, $\mathbf{a}_2 = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{a}_3 = 2\mathbf{j} + \mathbf{k}$.

Also define the vectors \mathbf{A} and \mathbf{B} in this basis as

$$\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}, \quad \mathbf{B} = \mathbf{i} - \mathbf{k},$$

where the components may be found as $A_i = \mathbf{A} \cdot \mathbf{e}_i$, $B_i = \mathbf{B} \cdot \mathbf{e}_i$, i = 1, ..., 3. (For simplicity, you may wish to represent the vectors as column vectors containing the components, provided you are clear which basis is being used...)

- (a) Show that the vectors \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3 are linearly independent. Use the Gram-Schmidt process to obtain a set of three mutually orthogonal vectors $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ from $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$, where $\mathbf{b}_1 = \mathbf{a}_1$. Also normalize the vectors \mathbf{b}_i to obtain a new orthonormal basis $\{\mathbf{i}', \mathbf{j}', \mathbf{k}'\} = \{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ for \mathbb{R}^3 , where \mathbf{e}'_i is a unit vector in the direction of \mathbf{b}_i , $i = 1, \ldots, 3$.
- (b) Use orthogonal projections onto the new basis vectors to find the components A'_i , B'_i of **A** and **B** with respect to the new basis, where

$$\mathbf{A} = \sum_{i=1}^{3} A'_i \mathbf{e}'_i$$

and similarly for **B**.

(c) Lastly, compute $\mathbf{A} \cdot \mathbf{B}$ in both the old and the new coordinate system, and verify that your answers are the same (that is, $\mathbf{A} \cdot \mathbf{B}$ is a scalar, a quantity independent of the coordinate system).

2. To hand in:

In class we applied the Gram-Schmidt process to $\{1, x, x^2, x^3\}$, with the inner product $(f, g) = \int_{-1}^{1} f(x)g(x) dx$, to find the first four Legendre polynomials (unscaled),

$$p_0(x) = 1, \ p_1(x) = x, \ p_2(x) = x^2 - \frac{1}{3}, \ p_3(x) = x^3 - \frac{3}{5}x$$

- (a) Continue the process one more step to derive $p_4(x)$, a degree 4 polynomial orthogonal to $p_j(x)$, j < 4, and normalize your answer to find the Legendre polynomial $P_4(x)$ of degree 4, where $P_4(1) = 1$.
- (b) Find an approximation $F_4(x)$ to the function $f(x) = x^5$ over the interval [-1, 1] using polynomials of degree ≤ 4 , by projecting onto the Legendre basis. Use Maple to verify that you have computed $P_4(x)$ correctly, and to plot $F_4(x)$ and $f(x) = x^5$ on the same axes.

3. Maple bonus question:

Find a Taylor polynomial and a Legendre polynomial approximations of degree 2 of the function $f(x) = \cos(\pi x) - 3x$, and plot both on the same set of axes with f(x). Briefly discuss which approximation is more accurate near x = 0, and over the entire domain. Also plot the approximations of degree 4.

4. To hand in:

Define an inner product for functions f(x), g(x) defined on $[0,\infty)$ by

$$(f,g) = \int_0^\infty f(x)g(x)e^{-x}\,dx,$$

that is, using a weight function $w(x) = e^{-x}$.

Apply the Gram-Schmidt process to the polynomials $f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = x^2$ to obtain polynomials $L_0(x)$, $L_1(x)$ and $L_2(x)$ which are orthogonal with respect to the above inner product. Check that $L_1(x)$ and $L_2(x)$ are orthogonal. If q(x) is a quadratic polynomial, and

$$q(x) = c_0 L_0(x) + c_1 L_1(x) + c_2 L_2(x),$$

write formulas for the coefficients c_0 , c_1 and c_2 (use orthogonality!).

[Answer: These are the Laguerre polynomials: $L_0(x) = 1$, $L_1(x) = x - 1$, $L_2(x) = x^2 - 4x + 2$. They form a basis for the set of all (quadratic) polynomials on $[0, \infty)$; coefficients are $c_j = \int_0^\infty q(x)L_j(x)e^{-x} dx / \int_0^\infty L_j(x)^2 e^{-x} dx$.]

5. For study, not to hand in:

Verify the fundamental orthogonality relationships for trigonometric functions on $[-\pi, \pi]$ (where *m* and *n* are positive integers):

(a)
$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \pi \delta_{mn} \text{ if } m \text{ and } n > 0,$$

where δ_{mn} is the Kronecker delta $(\delta_{mn} = 1 \text{ if } m = n, 0 \text{ if } m \neq n).$
(b)
$$\int_{-\pi}^{\pi} \cos 0x \cos nx \, dx = \int_{-\pi}^{\pi} \cos nx \, dx = 2\pi \delta_{0n}$$

(c)
$$\int_{-\pi}^{\pi} \cos mx \sin nx \, dx = 0$$

6. Hand in (a,b):

- (a) Compute the Fourier coefficients a_0 , a_k and b_k , and hence write down the Fourier series, for the function f(x) = x on $[-\pi, \pi]$.
- (b) Write down the Fourier approximation $F_3(x)$ of f(x) = x up to the third harmonic term; use Maple to graph this approximation together with the original function; also graph the 9th harmonic approximation $F_9(x)$.

Parts (c,d) are optional, and not for the exam:

- (c) Compute the total energy $E = (1/\pi) \int_{-\pi}^{\pi} f(x)^2 dx$. What fraction of the energy is contained in the constant term and first three harmonics?
- (d) The Fourier series you should have obtained in (a) is

$$x = 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin kx = 2(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \dots)$$

(it turns out that the series converges to f(x) = x at each point x where the 2π -periodic extension of f is continuous, that is, on the open interval $-\pi < x < \pi$). Substitute $x = \pi/2$ into both sides of the above formula to demonstrate the following interesting sum of an infinite series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

7. For study, not to hand in:

Repeat the calculations of question 6 for the functions:

- (a) Square wave: $f(x) = \operatorname{sgn}(x) = \begin{cases} -1 & -\pi < x < 0\\ 1 & 0 < x < \pi \end{cases}$ (we can define f(x) = 0 for x = 0 and π ; this function is signum(x) in Maple).
- (b) Triangular wave: $f(x) = |x| = \begin{cases} -x & -\pi \le x < 0 \\ x & 0 \le x < \pi \end{cases}$.

For both (a) and (b), also (optional, not for this exam) plot the *periodic extension* of f, that is, the function repeated 2π -periodically, on $[-3\pi, 3\pi]$, and use Maple to plot the Fourier polynomials to the Nth harmonic on $[-3\pi, 3\pi]$ with N = 1, 3, 9 and 21, to see the convergence when one uses more terms. Note that in (a) we see an "overshoot" and oscillations near the discontinuities in (the periodic extension of) f (Gibbs phenomenon), while in (b), we do not see such oscillations, since (the periodic extension of) f is continuous.