Vector Calculus

Homework Set 11 (last set!)
Due by the Final, Tuesday, 19 April 2005

Course Web Site: http://www.math.sfu.ca/~ralfw/math252/

1. Linear Independence, the Gram-Schmidt Process, and Orthogonal Transformations

A set of nonzero vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ is linearly independent if no nontrivial linear combination of the vectors vanishes; that is, if the vectorial equation

$$
\sum_{i=1}^{n} c_{i} \mathbf{a}_{i}=\mathbf{0}
$$

has the unique solution $c_{1}=c_{2}=\cdots=c_{n}=0$. Equivalently, none of the vectors can be expressed as a linear combination of the others; for instance, there are no solutions of $\mathbf{a}_{n}=c_{1}^{\prime} \mathbf{a}_{1}+\cdots+c_{n-1}^{\prime} \mathbf{a}_{n-1}$. For vectors in \mathbb{R}^{3}, linear independence of $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} means that the three vectors are not coplanar, that is, that \mathbf{a}_{3} does not lie in the plane defined by the vectors \mathbf{a}_{1} and \mathbf{a}_{2} (assumed non-parallel).
Given a set of linearly independent vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$, we may successively construct a set of mutually orthogonal vectors $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ (spanning the same subspace) using the Gram-Schmidt process. The idea is as follows:

- Choose $\mathbf{b}_{1}=\mathbf{a}_{1}$ (or any nonzero multiple of \mathbf{a}_{1}).
- Next, we wish to choose \mathbf{b}_{2} as a vector in the subspace spanned by \mathbf{a}_{1} and \mathbf{a}_{2}, but orthogonal to \mathbf{b}_{1} (consequently, $\operatorname{span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}=\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$). Thus define

$$
\mathbf{b}_{2}=\mathbf{a}_{2}-\lambda \mathbf{b}_{1},
$$

and find λ using the condition $\mathbf{b}_{2} \cdot \mathbf{b}_{1}=0$; this gives $\lambda=\mathbf{a}_{2} \cdot \mathbf{b}_{1} / \mathbf{b}_{1} \cdot \mathbf{b}_{1}$, so that

$$
\mathbf{b}_{2}=\mathbf{a}_{2}-\frac{\mathbf{a}_{2} \cdot \mathbf{b}_{1}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}=\mathbf{a}_{2}-\operatorname{proj}_{\mathbf{b}_{1}} \mathbf{a}_{2} .
$$

Note that $\mathbf{b}_{2} \neq \mathbf{0}$, since if it were zero that would imply that \mathbf{a}_{2} and $\mathbf{b}_{1}=\mathbf{a}_{1}$ were linearly dependent, which they are not.

- Now we can proceed analogously to obtain the remaining orthogonal vectors: At the k th step in the process $(k \geq 2)$, we obtain \mathbf{b}_{k} by taking \mathbf{a}_{k} and subtracting from it its projection onto the subspace spanned by the previously constructed vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k-1}$:

$$
\mathbf{b}_{k}=\mathbf{a}_{k}-\frac{\mathbf{a}_{k} \cdot \mathbf{b}_{1}}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}-\cdots-\frac{\mathbf{a}_{k} \cdot \mathbf{b}_{k-1}}{\mathbf{b}_{k-1} \cdot \mathbf{b}_{k-1}} \mathbf{b}_{k-1}=\mathbf{a}_{k}-\sum_{i=1}^{k-1} \frac{\mathbf{a}_{k} \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \mathbf{b}_{i} .
$$

You should verify that this indeed implies that $\mathbf{b}_{k} \cdot \mathbf{b}_{i}=0$ for $i=1, \ldots, k-1$, and that $\mathbf{b}_{k} \neq \mathbf{0}$ since $\mathbf{a}_{k} \notin \operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k-1}\right\}=\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k-1}\right\}$.
Once the orthogonal set $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ has been constructed recursively, it is straightforward to obtain an orthonormal set of vectors $\left\{\mathbf{e}_{1}^{\prime}, \ldots, \mathbf{e}_{n}^{\prime}\right\}$ spanning the same subspace, by defining $\mathbf{e}_{k}^{\prime}=\mathbf{b}_{k} /\left|\mathbf{b}_{k}\right|, k=1, \ldots, n$.
(... questions on next page ...)

In this problem (which you should study and understand, but don't need to hand in), we will use the Gram-Schmidt process to construct an orthonormal basis of \mathbb{R}^{3} from a set of three independent vectors, and then compute the coordinates of given vectors \mathbf{A} and \mathbf{B} with respect to the new basis:
Consider the vectors in \mathbb{R}^{3}, expressed in terms of the basis $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ as

$$
\mathbf{a}_{1}=\mathbf{i}-\mathbf{j}, \quad \mathbf{a}_{2}=3 \mathbf{i}+\mathbf{j}-\mathbf{k}, \quad \mathbf{a}_{3}=2 \mathbf{j}+\mathbf{k}
$$

Also define the vectors \mathbf{A} and \mathbf{B} in this basis as

$$
\mathbf{A}=A_{1} \mathbf{i}+A_{2} \mathbf{j}+A_{3} \mathbf{k}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}, \quad \mathbf{B}=\mathbf{i}-\mathbf{k}
$$

where the components may be found as $A_{i}=\mathbf{A} \cdot \mathbf{e}_{i}, B_{i}=\mathbf{B} \cdot \mathbf{e}_{i}, i=1, \ldots, 3$. (For simplicity, you may wish to represent the vectors as column vectors containing the components, provided you are clear which basis is being used...)
(a) Show that the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} are linearly independent. Use the GramSchmidt process to obtain a set of three mutually orthogonal vectors $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ from $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$, where $\mathbf{b}_{1}=\mathbf{a}_{1}$. Also normalize the vectors \mathbf{b}_{i} to obtain a new orthonormal basis $\left\{\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{k}^{\prime}\right\}=\left\{\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}\right\}$ for \mathbb{R}^{3}, where \mathbf{e}_{i}^{\prime} is a unit vector in the direction of $\mathbf{b}_{i}, i=1, \ldots, 3$.
(b) Use orthogonal projections onto the new basis vectors to find the components $A_{i}^{\prime}, B_{i}^{\prime}$ of \mathbf{A} and \mathbf{B} with respect to the new basis, where

$$
\mathbf{A}=\sum_{i=1}^{3} A_{i}^{\prime} \mathbf{e}_{i}^{\prime}
$$

and similarly for \mathbf{B}.
(c) Lastly, compute $\mathbf{A} \cdot \mathbf{B}$ in both the old and the new coordinate system, and verify that your answers are the same (that is, $\mathbf{A} \cdot \mathbf{B}$ is a scalar, a quantity independent of the coordinate system).

2. To hand in:

In class we applied the Gram-Schmidt process to $\left\{1, x, x^{2}, x^{3}\right\}$, with the inner product $(f, g)=\int_{-1}^{1} f(x) g(x) d x$, to find the first four Legendre polynomials (unscaled),

$$
p_{0}(x)=1, p_{1}(x)=x, p_{2}(x)=x^{2}-\frac{1}{3}, p_{3}(x)=x^{3}-\frac{3}{5} x
$$

(a) Continue the process one more step to derive $p_{4}(x)$, a degree 4 polynomial orthogonal to $p_{j}(x), j<4$, and normalize your answer to find the Legendre polynomial $P_{4}(x)$ of degree 4 , where $P_{4}(1)=1$.
(b) Find an approximation $F_{4}(x)$ to the function $f(x)=x^{5}$ over the interval $[-1,1]$ using polynomials of degree ≤ 4, by projecting onto the Legendre basis. Use Maple to verify that you have computed $P_{4}(x)$ correctly, and to plot $F_{4}(x)$ and $f(x)=x^{5}$ on the same axes.

3. Maple bonus question:

Find a Taylor polynomial and a Legendre polynomial approximations of degree 2 of the function $f(x)=\cos (\pi x)-3 x$, and plot both on the same set of axes with $f(x)$. Briefly discuss which approximation is more accurate near $x=0$, and over the entire domain. Also plot the approximations of degree 4.

4. To hand in:

Define an inner product for functions $f(x), g(x)$ defined on $[0, \infty)$ by

$$
(f, g)=\int_{0}^{\infty} f(x) g(x) e^{-x} d x
$$

that is, using a weight function $w(x)=e^{-x}$.
Apply the Gram-Schmidt process to the polynomials $f_{0}(x)=1, f_{1}(x)=x, f_{2}(x)=x^{2}$ to obtain polynomials $L_{0}(x), L_{1}(x)$ and $L_{2}(x)$ which are orthogonal with respect to the above inner product. Check that $L_{1}(x)$ and $L_{2}(x)$ are orthogonal. If $q(x)$ is a quadratic polynomial, and

$$
q(x)=c_{0} L_{0}(x)+c_{1} L_{1}(x)+c_{2} L_{2}(x),
$$

write formulas for the coefficients c_{0}, c_{1} and c_{2} (use orthogonality!).
[Answer: These are the Laguerre polynomials: $L_{0}(x)=1, L_{1}(x)=x-1, L_{2}(x)=x^{2}-$ $4 x+2$. They form a basis for the set of all (quadratic) polynomials on $[0, \infty)$; coefficients are $c_{j}=\int_{0}^{\infty} q(x) L_{j}(x) e^{-x} d x / \int_{0}^{\infty} L_{j}(x)^{2} e^{-x} d x$.]

5. For study, not to hand in:

Verify the fundamental orthogonality relationships for trigonometric functions on $[-\pi, \pi]$ (where m and n are positive integers):
(a) $\int_{-\pi}^{\pi} \cos m x \cos n x d x=\pi \delta_{m n}$ if m and $n>0$, where $\delta_{m n}$ is the Kronecker delta ($\delta_{m n}=1$ if $m=n, 0$ if $m \neq n$).
(b) $\int_{-\pi}^{\pi} \cos 0 x \cos n x d x=\int_{-\pi}^{\pi} \cos n x d x=2 \pi \delta_{0 n}$
(c) $\int_{-\pi}^{\pi} \cos m x \sin n x d x=0$
6. Hand in (\mathbf{a}, b):
(a) Compute the Fourier coefficients a_{0}, a_{k} and b_{k}, and hence write down the Fourier series, for the function $f(x)=x$ on $[-\pi, \pi]$.
(b) Write down the Fourier approximation $F_{3}(x)$ of $f(x)=x$ up to the third harmonic term; use Maple to graph this approximation together with the original function; also graph the 9th harmonic approximation $F_{9}(x)$.

Parts (c, d) are optional, and not for the exam:
(c) Compute the total energy $E=(1 / \pi) \int_{-\pi}^{\pi} f(x)^{2} d x$. What fraction of the energy is contained in the constant term and first three harmonics?
(d) The Fourier series you should have obtained in (a) is

$$
x=2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin k x=2\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\ldots\right)
$$

(it turns out that the series converges to $f(x)=x$ at each point x where the 2π periodic extension of f is continuous, that is, on the open interval $-\pi<x<\pi$). Substitute $x=\pi / 2$ into both sides of the above formula to demonstrate the following interesting sum of an infinite series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4} .
$$

7. For study, not to hand in:

Repeat the calculations of question 6 for the functions:
(a) Square wave: $f(x)=\operatorname{sgn}(x)= \begin{cases}-1 & -\pi<x<0 \\ 1 & 0<x<\pi\end{cases}$
(we can define $f(x)=0$ for $x=0$ and π; this function is signum(x) in Maple).
(b) Triangular wave: $f(x)=|x|=\left\{\begin{array}{ll}-x & -\pi \leq x<0 \\ x & 0 \leq x<\pi\end{array}\right.$.

For both (a) and (b), also (optional, not for this exam) plot the periodic extension of f, that is, the function repeated 2π-periodically, on $[-3 \pi, 3 \pi]$, and use Maple to plot the Fourier polynomials to the N th harmonic on $[-3 \pi, 3 \pi]$ with $N=1,3,9$ and 21, to see the convergence when one uses more terms. Note that in (a) we see an "overshoot" and oscillations near the discontinuities in (the periodic extension of) f (Gibbs phenomenon), while in (b), we do not see such oscillations, since (the periodic extension of) f is continuous.

