
MATH 252-3 Spring 2005
Vector Calculus

Homework Set 11 (last set!) Due by the Final, Tuesday, 19 April 2005

Course Web Site: http://www.math.sfu.ca/∼ralfw/math252/

1. Linear Independence, the Gram-Schmidt Process, and Orthogonal Transformations
A set of nonzero vectors {a1,a2, . . . ,an} is linearly independent if no nontrivial linear
combination of the vectors vanishes; that is, if the vectorial equation

n∑
i=1

ciai = 0

has the unique solution c1 = c2 = · · · = cn = 0. Equivalently, none of the vectors can
be expressed as a linear combination of the others; for instance, there are no solutions of
an = c′1a1 + · · ·+ c′n−1an−1. For vectors in R3, linear independence of a1, a2 and a3 means
that the three vectors are not coplanar, that is, that a3 does not lie in the plane defined
by the vectors a1 and a2 (assumed non-parallel).

Given a set of linearly independent vectors {a1,a2, . . . ,an}, we may successively construct
a set of mutually orthogonal vectors {b1,b2, . . . ,bn} (spanning the same subspace) using
the Gram-Schmidt process. The idea is as follows:

• Choose b1 = a1 (or any nonzero multiple of a1).

• Next, we wish to choose b2 as a vector in the subspace spanned by a1 and a2, but
orthogonal to b1 (consequently, span{b1,b2} = span{a1,a2}). Thus define

b2 = a2 − λb1 ,

and find λ using the condition b2 · b1 = 0; this gives λ = a2 · b1/b1 · b1, so that

b2 = a2 −
a2 · b1

b1 · b1
b1 = a2 − projb1

a2.

Note that b2 6= 0, since if it were zero that would imply that a2 and b1 = a1 were
linearly dependent, which they are not.

• Now we can proceed analogously to obtain the remaining orthogonal vectors: At the
kth step in the process (k ≥ 2), we obtain bk by taking ak and subtracting from
it its projection onto the subspace spanned by the previously constructed vectors
b1, . . . ,bk−1:

bk = ak −
ak · b1

b1 · b1
b1 − · · · − ak · bk−1

bk−1 · bk−1
bk−1 = ak −

k−1∑
i=1

ak · bi

bi · bi
bi .

You should verify that this indeed implies that bk · bi = 0 for i = 1, . . . , k − 1, and
that bk 6= 0 since ak 6∈ span{a1, . . . ,ak−1} = span{b1, . . . ,bk−1}.
Once the orthogonal set {b1, . . . ,bn} has been constructed recursively, it is straight-
forward to obtain an orthonormal set of vectors {e′1, . . . , e′n} spanning the same sub-
space, by defining e′k = bk/|bk|, k = 1, . . . , n.

(. . . questions on next page . . . )



In this problem (which you should study and understand, but don’t need to hand in),
we will use the Gram-Schmidt process to construct an orthonormal basis of R3 from a set
of three independent vectors, and then compute the coordinates of given vectors A and B
with respect to the new basis:

Consider the vectors in R3, expressed in terms of the basis {i, j,k} = {e1, e2, e3} as

a1 = i− j , a2 = 3i + j− k , a3 = 2j + k.

Also define the vectors A and B in this basis as

A = A1i + A2j + A3k = 4i− 3j + 2k, B = i− k,

where the components may be found as Ai = A·ei, Bi = B·ei, i = 1, . . . , 3. (For simplicity,
you may wish to represent the vectors as column vectors containing the components,
provided you are clear which basis is being used. . . )

(a) Show that the vectors a1, a2 and a3 are linearly independent. Use the Gram-
Schmidt process to obtain a set of three mutually orthogonal vectors {b1,b2,b3}
from {a1,a2,a3}, where b1 = a1. Also normalize the vectors bi to obtain a new
orthonormal basis {i′, j′,k′} = {e′1, e′2, e′3} for R3, where e′i is a unit vector in the
direction of bi, i = 1, . . . , 3.

(b) Use orthogonal projections onto the new basis vectors to find the components A′
i, B′

i

of A and B with respect to the new basis, where

A =
3∑

i=1

A′
ie
′
i

and similarly for B.

(c) Lastly, compute A ·B in both the old and the new coordinate system, and verify that
your answers are the same (that is, A ·B is a scalar, a quantity independent of the
coordinate system).

2. To hand in:
In class we applied the Gram-Schmidt process to {1, x, x2, x3}, with the inner product
(f, g) =

∫ 1
−1 f(x)g(x) dx, to find the first four Legendre polynomials (unscaled),

p0(x) = 1, p1(x) = x, p2(x) = x2 − 1
3
, p3(x) = x3 − 3

5
x .

(a) Continue the process one more step to derive p4(x), a degree 4 polynomial orthogonal
to pj(x), j < 4, and normalize your answer to find the Legendre polynomial P4(x) of
degree 4, where P4(1) = 1.

(b) Find an approximation F4(x) to the function f(x) = x5 over the interval [−1, 1]
using polynomials of degree ≤ 4, by projecting onto the Legendre basis. Use Maple
to verify that you have computed P4(x) correctly, and to plot F4(x) and f(x) = x5

on the same axes.

3. Maple bonus question:
Find a Taylor polynomial and a Legendre polynomial approximations of degree 2 of the
function f(x) = cos(πx) − 3x, and plot both on the same set of axes with f(x). Briefly
discuss which approximation is more accurate near x = 0, and over the entire domain.
Also plot the approximations of degree 4.



4. To hand in:
Define an inner product for functions f(x), g(x) defined on [0,∞) by

(f, g) =
∫ ∞

0
f(x)g(x)e−x dx,

that is, using a weight function w(x) = e−x.

Apply the Gram-Schmidt process to the polynomials f0(x) = 1, f1(x) = x, f2(x) = x2

to obtain polynomials L0(x), L1(x) and L2(x) which are orthogonal with respect to the
above inner product. Check that L1(x) and L2(x) are orthogonal. If q(x) is a quadratic
polynomial, and

q(x) = c0L0(x) + c1L1(x) + c2L2(x),

write formulas for the coefficients c0, c1 and c2 (use orthogonality!).
[Answer: These are the Laguerre polynomials: L0(x) = 1, L1(x) = x − 1, L2(x) = x2 −
4x + 2. They form a basis for the set of all (quadratic) polynomials on [0,∞); coefficients
are cj =

∫∞
0 q(x)Lj(x)e−x dx/

∫∞
0 Lj(x)2e−x dx.]

5. For study, not to hand in:
Verify the fundamental orthogonality relationships for trigonometric functions on [−π, π]
(where m and n are positive integers):

(a)
∫ π

−π
cos mx cos nx dx = πδmn if m and n > 0,

where δmn is the Kronecker delta (δmn = 1 if m = n, 0 if m 6= n).

(b)
∫ π

−π
cos 0x cos nx dx =

∫ π

−π
cos nx dx = 2πδ0n

(c)
∫ π

−π
cos mx sinnx dx = 0

6. Hand in (a,b):

(a) Compute the Fourier coefficients a0, ak and bk, and hence write down the Fourier
series, for the function f(x) = x on [−π, π].

(b) Write down the Fourier approximation F3(x) of f(x) = x up to the third harmonic
term; use Maple to graph this approximation together with the original function; also
graph the 9th harmonic approximation F9(x).

Parts (c,d) are optional, and not for the exam:

(c) Compute the total energy E = (1/π)
∫ π
−π f(x)2 dx. What fraction of the energy is

contained in the constant term and first three harmonics?

(d) The Fourier series you should have obtained in (a) is

x = 2
∞∑

k=1

(−1)k+1

k
sin kx = 2(sinx− 1

2
sin 2x +

1
3

sin 3x− 1
4

sin 4x + . . . )

(it turns out that the series converges to f(x) = x at each point x where the 2π-
periodic extension of f is continuous, that is, on the open interval −π < x < π).
Substitute x = π/2 into both sides of the above formula to demonstrate the following
interesting sum of an infinite series:

∞∑
n=1

(−1)n+1

2n− 1
= 1− 1

3
+

1
5
− 1

7
+ · · · = π

4
.



7. For study, not to hand in:
Repeat the calculations of question 6 for the functions:

(a) Square wave: f(x) = sgn(x) =

{
−1 −π < x < 0
1 0 < x < π

(we can define f(x) = 0 for x = 0 and π; this function is signum(x) in Maple).

(b) Triangular wave: f(x) = |x| =

{
−x −π ≤ x < 0
x 0 ≤ x < π

.

For both (a) and (b), also (optional, not for this exam) plot the periodic extension
of f , that is, the function repeated 2π-periodically, on [−3π, 3π], and use Maple to
plot the Fourier polynomials to the Nth harmonic on [−3π, 3π] with N = 1, 3, 9 and
21, to see the convergence when one uses more terms. Note that in (a) we see an
“overshoot” and oscillations near the discontinuities in (the periodic extension of) f
(Gibbs phenomenon), while in (b), we do not see such oscillations, since (the periodic
extension of) f is continuous.


