Course Web Site: http://www.math.sfu.ca/~ralfw/math252/

Textbook: Davis and Snider "Introduction to Vector Analysis":
Reading: Sections 1.8-1.15

Problems to study (for practice; you do not need to hand these in):

- Section 1.8 (pp.29-30):
$4,8,15$
- Section 1.10 (pp.38-40):
$5,8,19,22,27$
- Section 1.12 (pp.51-53):
$18,24,26$
- Section 1.13 (pp.57-59): 5, 7, 10, 16, 19
- Section 1.14 (pp.60-61): 3, 5, 10, 11

Problems to hand in:

- Section 1.8 (pp.29-30): 7, 11, 12, 18
- Section 1.10 (pp.38-40): 9, 12, 18, 28
- Section 1.12 (pp.51-53): 27
- Section 1.13 (pp.57-59): 3, 11, 15, 17
- Section 1.14 (pp.60-61): 2, 6, 7, 9
- Section 1.15 (p.66): 2

For problems $\mathbf{2}$ and $\mathbf{7}$ of section 1.14 (and the optional problem 3), please derive the relevant identities both (i) using previously derived identities and properties, using the methods of section 1.14, and (ii) using the tensor notation conventions and methods of section 1.15. Also show problem $\mathbf{7}$ using the geometric definitions of the dot and cross products.

Notes:

- For section 1.8 problem 18, either find the point(s) of intersection of the lines, or show that none exist.
- Observe that section 1.13 problem 17 gives the expansion of a vector \mathbf{V} in terms of any three independent vectors A, B and \mathbf{C} (they don't need to be orthogonal).
- Recall the Cauchy-Schwarz inequality

$$
|\mathbf{A} \cdot \mathbf{B}| \leq|\mathbf{A}||\mathbf{B}| \quad \Longrightarrow \quad|\mathbf{A}|^{2}|\mathbf{B}|^{2}-(\mathbf{A} \cdot \mathbf{B})^{2} \geq 0
$$

The result of section 1.14 problem $7,|\mathbf{A} \times \mathbf{B}|^{2}=|\mathbf{A}|^{2}|\mathbf{B}|^{2}-(\mathbf{A} \cdot \mathbf{B})^{2}$, provides a formula for the magnitude of the "error" in the Cauchy-Schwarz inequality. It also shows that the Cauchy-Schwarz inequality is an equality exactly when $\mathbf{A} \times \mathbf{B}=\mathbf{0}$, that is, if $\mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$ or \mathbf{A} and \mathbf{B} are parallel.

