Course Web Site: http://www.math.sfu.ca/~ralfw/math252/

Textbook: Davis and Snider "Introduction to Vector Analysis":

Reading: Sections 2.3-2.4, 3.1

Problems to study (for practice; you do not need to hand these in):

- Section 2.4 (pp.102-103): $1,4,6,10,16$
- Section 3.1 (pp.112-114): $1,8,10(\mathrm{~d}), 11,14,19,20,21,24,29,36$

Problems to hand in:

- Section 2.3 (pp.95-98): 18
- Section 2.4 (pp.102-103): 3, 7, 8, 14
- Section 3.1 (pp.112-114): 4, 5, 7, 10(a), 12, 17, 23, 32, 34

Extra problem (to hand in)

1. Let $r=|\mathbf{R}|=|\mathbf{x}|=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ be the distance of the point (x, y, z) from the origin in \mathbb{R}^{3}. Using Cartesian coordinates, compute
(a) $\operatorname{grad} r$
(b) $\operatorname{grad} \frac{1}{r}$

Write your answers in terms of r and \mathbf{R}. We will see later that these calculations are much simpler in spherical polar coordinates.

