MATH 252-3

Vector Calculus

Spring 2005

Homework Set 8

Due Wednesday, 16 March 2005

Course Web Site: http://www.math.sfu.ca/~ralfw/math252/

Textbook: Davis and Snider "Introduction to Vector Analysis"

Reading: Sections 4.1–5

Problems to study (for practice; you do not need to hand these in):

- Section 4.1 (pp.190–192): 15, 16, 17, 18
- Section 4.2 (p.196): 2, 8, 9, 10
- Section 4.3 (p.204): 2, 3, 8
- Section 4.4 (pp.212–213): 3, 4, 6, 11
- Section 4.5 (pp.222–223): 2, 6, 7

Problems to hand in:

- Section 4.1 (pp.190–192): 10, 12
- Section 4.2 (p.196): 1, 5, 6
- Section 4.3 (p.204): 2(c), 3(c), 4, 5, 6
- Section 4.4 (pp.212-213): 1(c,d), 2, 7, 9
- Section 4.5 (pp.222–223): 1, 8, 10 (see note 1 below)

Notes:

1. For problem 10 in Section 4.5, compute two different vector potentials: find \mathbf{G}_1 using formula (4.18) (integrate along a line segment), and find $\mathbf{G}_2 = \chi \mathbf{k}$ using the method on p.221, where χ is a scalar potential for $\mathbf{k} \times \mathbf{F}$ (this easier method works specifically for two-dimensional vector fields; we didn't manage to cover this in class); in each case, check that $\mathbf{F} = \nabla \times \mathbf{G}$.

Additional Problems on Reverse...

1. Conservative Forces

If a *force field* \mathbf{F} is conservative, in physics it is customary to choose the opposite sign for the potential function, and write $\mathbf{F} = -\nabla \phi$ (or frequently $\mathbf{F} = -\nabla V$); the sign convention implies that the force \mathbf{F} acts in the direction of *decreasing* potential ϕ .

(a) Show that the work done by a conservative force \mathbf{F} in moving a particle of mass m from point P to Q, is path-independent, and is given by

$$W = \int_{P}^{Q} \mathbf{F} \cdot d\mathbf{R} = \phi(P) - \phi(Q).$$

- (b) Using Newton's Law $\mathbf{F} = m\mathbf{a} = m\mathbf{v}'$, show that the work done in moving a particle from P to Q along the path $C : \mathbf{R} = \mathbf{R}(t)$, $a \le t \le b$, equals the change in the kinetic energy $\frac{1}{2}mv^2$ (where the velocity is $\mathbf{v}(t) = \mathbf{R}'(t)$, and the speed is $v = |\mathbf{v}|$).
- (c) By combining the above two expressions for the work done, conclude that

$$\frac{1}{2}mv_P^2 + \phi(P) = \frac{1}{2}mv_Q^2 + \phi(Q).$$

The scalar field $\phi(\mathbf{R})$ thus clearly has units of energy, and is called the *potential energy*; the work done by \mathbf{F} is the *decrease* in potential energy. The above equation then expresses the *Law of Conservation of Energy*: The total energy, the sum of the *kinetic energy* $\frac{1}{2}mv^2$ and the potential energy $\phi(\mathbf{R})$, remains constant under the action of a conservative force.

(d) Show that the gravitational force $\mathbf{F} = -GMm\mathbf{R}/|\mathbf{R}|^3$ is conservative, find the associated potential energy (it is easiest to use spherical coordinates), and write an expression for the total energy. Show that the work done in moving a particle of mass m from radius $R = |\mathbf{R}| = R_0$ to $R = R_1$ is

$$W = -GMm\left(\frac{1}{R_0} - \frac{1}{R_1}\right);$$

if the corresponding initial and final speeds are $v = v_0$ and $v = v_1$, write down the equation of energy conservation and use it to find v_0 in terms of R_0 , R_1 and v_1 . For a particle leaving the surface of the earth (radius R_0 , mass M) with speed v_0 , hence show that if $v_0 < v_e \equiv \sqrt{2GM/R_0}$, then the maximum height R_1 reached (when $v_1 = 0$) is finite, while if $v_0 \ge v_e$, then the particle can escape the earth's gravitational influence (we can have $R_1 \to \infty$); the speed v_e is called the *escape velocity* (of course we have neglected effects such as air resistance).

2. Fun with the Möbius Strip...

Construct a Möbius strip by taking a strip of paper, giving it a single twist and taping the ends together. Convince yourself that the resulting surface has only one side.

- (a) Cut the Möbius strip down a central line (can you predict the result in advance?), and report your observations. (As suggested by a Math 252 student:) You may also wish to cut a Möbius strip along 1/3 of the width of the strip; what happens?
- (b) What happens if you use a double twist instead of a single twist?