
MATH 467-3 Fall 2003
Dynamical Systems

Homework Set 3 Due Wednesday, 1 October 2003

Course Web Site: http://www.math.sfu.ca/∼ralfw/math467/

Homework Problems: One- and two-parameter bifurcations of fixed points

Problems from Strogatz “Nonlinear Dynamics and Chaos”:

• Section 3.3: 3.3.1(a)–(c)

• Section 3.4: 3.4.8, 3.4.11, 3.4.12, 3.4.14

Additional problems (Lab assignment): Numerical Bifurcation Diagrams

(Problem 1 is required, 2 is optional—good attempts will earn bonus points. You should read
through the description carefully first.)

Consider a one-dimensional dynamical system ẋ = f(x, r), describing the evolution of x(t)
depending on some parameter r (there may also be other parameters, say b, but we will ignore
them for now, treating them as constants). We wish to plot the bifurcation diagram, that is, to
compute the set of zeros x∗(r) of f (or equilibrium points of the dynamical system), indicating
how they depend on the varying parameter r. In this assignment we will consider an approach
to computing the equilibria x∗(r), and use some Matlab code to implement the method.

The idea is quite simple (and beautiful): In general the curve may be multivalued, that is, for a
given r there may be more than one fixed point; thus it is not convenient to attempt to compute
x∗(r) directly. However, we can obtain it parametrically; we may introduce a parameter s, and
suppose that the curve of fixed points is given parametrically by r = r(s), x∗ = x(s): that is,
f(x(s), r(s)) = 0 for all s (in some interval). Taking the total derivative with respect to s, we
obtain

0 =
df(x(s), r(s))

ds
=

∂f(x(s), r(s))
∂x

x′ +
∂f(x(s), r(s))

∂r
r′, (1)

where x′ ≡ dx/ds, r′ ≡ dr/ds. Now the simplest way to satisfy (1) is to set

r′ =
∂f(x(s), r(s))

∂x
,

x′ = −∂f(x(s), r(s))
∂r

,

(2)

and taking initial data (r0, x0) on the curve, so that f(x0, r0) = 0. (We may choose r′ and x′ in
this way since the actual choice of the parameter s is irrelevant; to compute the curve, only the
ratio x′/r′ is relevant.) The solution (r(s), x(s)) of the initial-value problem (2) is a branch of
the bifurcation diagram.

For a saddle-node bifurcation, such a solution integrated for a sufficiently large interval of s-
values will yield the complete bifurcation diagram. However, observe that for a transcritical or
pitchfork bifurcation, the bifurcation point (rc, x

∗) is a fixed point of (2), since both ∂f/∂x and
∂f/∂r vanish at the bifurcation point. Thus we cannot integrate (2) past the bifurcation point
(this reflects the fact that two or three curves of zeros of f meet at the bifurcation point, so



we cannot continue a single curve uniquely through that point). Hence in order to obtain the
complete bifurcation diagram, we need to integrate (2) starting separately on each branch of
zeros of f .

An interpretation: We may interpret the system (2) as a Hamiltonian system from classical
mechanics. All Hamiltonian systems (where we may think of r as a generalized coordinate,
with x its associated, or conjugate, momentum) have an associated conserved quantity, or first
integral, often identified with an energy; in this case it is f . Solutions of a Hamiltonian system
lie on level sets of f . We are interested in the zero level set of f . Thus we can identify the curves
of equilibria of the dynamical system ẋ = f(x, r) with orbits of the Hamiltonian system (2).

We shall use the above system (2) to compute the bifurcation diagrams of some dynamical
systems using Matlab. To do so, I have supplied the m-file bifurcationplot.m. This file
computes a branch of the bifurcation diagram for a one-dimensional dynamical system ẋ =
f(x, r) (specified in a file of the type func.m), taking as input a file of the form vfield.m which
defines the vector field on the right-hand side of (2). We also need to specify values r0 and x0

on the curve; to find such values, we solve f(x, r) = 0 for a fixed value of r (using the Matlab
command fzero and the function m-file func.m).

An example of using the code bifurcationplot.m is given in the script m-file compute_bifn1.m
(which I had hoped to demonstrate in class!), with associated function m-files func1.m and
vfield1.m. This script computes the bifurcation diagram for the supercritical pitchfork bifur-
cation occurring in the system ẋ = −x+r tanh x. You should work through this code, run it (hit
any key to continue when it pauses), and make sure you understand the different commands.
Note that we need to run the script bifurcationplot four times with four different initial points
to obtain the complete bifurcation picture for this pitchfork bifurcation.

One can also read off the stability of the fixed points from the computed bifurcation diagram.
The segments that are integrated forwards in s are plotted as red, solid curves, while those
computed backwards in s are blue and dashed. For each computed branch, the initial value
r = r0, x = x0 occurs where the red and blue segments meet. Thus we can see, for instance,
that the upper branch of the pitchfork is stable: since the red part of the upper branch occurs
for r < r0, we see that computing forward in time, r decreases with s, that is, dr/ds < 0.
Looking at the equations (2), this shows that ∂f/∂x < 0 along this branch of fixed points, so
by linear stability analysis, the fixed points along this upper branch are stable. Similarly, any
other branch of equilibria for which dr/ds < 0 (in this case, these are the lower branch past the
pitchfork bifurcation, and the branch x∗ = 0 before the bifurcation) is stable, and a branch for
which dr/ds > 0 (here, x∗ = 0 after the bifurcation) is unstable.
Warning: Be careful with stability! Note that for this code, a solid line does not necessarily
imply stability, nor does a dashed line imply instability, contrary to our usual convention. What
matters is the sign of ∂f/∂x, and hence of dr/ds.

Another example which you should work through, which I had also planned to demonstrate
class, is given by the script m-file compute_bifn2.m, with associated function m-files func2.m
and vfield2.m. In this case, we are computing the canonical subcritical pitchfork bifurcation
diagram occurring in ẋ = rx+x3−x5; and again we need to use four different initial values (the
upper, and lower, branches connected by saddle-node bifurcations do not need to be considered
separately, since the code can integrate past a saddle-node bifurcation point). Again, you should
run the code, hitting any key when it pauses (after plotting figures and printing the coordinates
of fixed points), and make sure that you understand what the code is doing.



Homework Assignment

1. Consider the dynamical system
ẋ = b + ax− x3; (3)

this is the imperfect bifurcation problem discussed in Section 3.6 of the text, which you
might want to read as you are working on this problem. The function m-files for this
problem are also supplied, as func3.m and vfield3.m. Notice that in this case we use
a for the parameter r, and also have a second parameter b; we shall compute the curves
x∗(a) for several different, but fixed, values of b. The value of b is initially fixed as b = 0.1
in the file func3.m ; to change the value of b, you would change this line.

Let’s get started on computing this bifurcation diagram: In Matlab, you could type

>> x = -1:0.02:1.5;
>> figure(1);
>> clf; % clears the figure 1 window
>> plot(x, func3(x,1), ’b’, [-1 1.5], [0 0], ’:’)

This gives us the graph of ẋ = f , where we have fixed a = 1. Looking at the graph, there
appear to be three zeros, near x = −1, x = 0 and x = 1 (note: the second part of the
plot command draws a straight, dotted line at y = 0, which makes it easier to identify
the zeros). Now we will use fzero to find the zeros accurately:

>> x1 = fzero(’func3(x,1)’, [-1 -0.5])

This returns the value of the zero in the interval [−1,−0.5]; note how we manually specified
a = 1 by typing ’func1(x,1)’. We similarly obtain the second and third zeros in the
variables x2 and x3 (in intervals suggested by our graph) by typing

>> x2 = fzero(’func3(x,1)’, [-0.5 0.5])
>> x3 = fzero(’func3(x,1)’, [0.5 1.5])

Now we can use bifurcationplot to integrate the vector field and trace the a-dependence
(remember, b is fixed at 0.1). We need to specify the initial values a0 and x0; we will take
a0 = 1, and for x0 we use the three equilibrium values computed above. We also specify
times ti < 0 and tf > 0 to integrate to. In Matlab, we type

>> figure(2) % open a new window
>> clf; % clear figure 2
>> hold on; % allows us to plot several graphs on top of each other
>> bifurcationplot(’vfield3’,x1,1,-1,1);

For our first computation we chose ti = −1 and tf = 1, as we didn’t know how far the
curves would go. By trial and error, we can choose appropriate values of ti and tf to make
a sufficiently pretty graph, and eventually use

>> bifurcationplot(’vfield3’,x1,1,-1,4);

Note that since a decreases with s on the lower branch (so ∂f/∂x < 0 on this branch, by
(2)) the lower branch below the turning point is stable, and similarly the upper branch is
unstable. Now let us check the other fixed points:

>> bifurcationplot(’vfield3’,x2,1,-1,1);



This did not add anything to the bifurcation diagram, as the fixed points x1 and x2 are
on the same branch, which undergoes a saddle-node (or turning point) bifurcation. The
remaining branch may be found from the fixed point x3 at a = 1:

>> bifurcationplot(’vfield3’,x3,1,-1,3);

This gives the complete bifurcation diagram for b = 0.1. Now we can consider other values
of b. . .

(a) Analytically compute the stability diagram in the a–b plane, that is, compute the
bifurcation curves in this plane by analytically solving f = 0 and fx = 0. Plot the
stability diagram, and explain why a = 0 is “special”.
[This is a “warm-up” calculation; you can follow Section 3.6 completely for this.]

(b) Fix values b > 0, b = 0 and b < 0, and use the Matlab code as above to produce
bifurcation diagrams of x∗ versus a (if you have followed the above instructions, you
have already completed the problem for b > 0; print out, label and hand in the
figures). Make sure that you find all the branches, label the branches as stable or
unstable, and identify the type of bifurcations. You should reproduce the figures of
Section 3.6 of the book by Strogatz.

2. Bonus:
If you like, you could try to do similar calculations for more complicated stability diagrams.
Consider the dynamical system

ẋ = b + a + a2x + ax2 − x3. (4)

(a) Analytically compute and plot the stability diagram for (4) in the a–b plane by solving
f = 0, fx = 0. Explain why the lines b = ±bc = ± 2√

5
are “special”. You should use

this stability diagram as a “road map” to help you find and explain your bifurcation
diagrams.

(b) Show that the system is symmetric under the change of variables b 7→ −b, a 7→ −a,
x 7→ −x. Hence it is only necessary to consider the bifurcation diagrams for b ≥ 0.

(c) Now we will map out the details of the bifurcations: The Matlab files func4.m and
vfield4.m are provided. Fix values of b slightly above and below bc, say 0.89 and
0.895, and use the Matlab codes to produce bifurcation diagrams of x∗ as a func-
tion of a (you could start at a = 0). Make sure that you find all the branches!
You should label the branches as stable or unstable, identify the type (saddle-node,
transcritical, . . . ) of any bifurcations you find, and indicate the bifurcations on the
stability diagram as well. Also label each connected set of the stability diagram as to
number and type of fixed points. Note: you may find that the values of a and/or x
diverge to ±∞; in this case you should reduce the range of s values in your integration.

Now repeat this for b = bc. What kind of bifurcation(s) do you find now?

Finally, choose a small value of b, say b = 0.2, calculate the bifurcation diagram
and identify the bifurcation(s) you find. To which points do they correspond on the
stability diagram?


