Homework Set 3

Course Web Site: http://www.math.sfu.ca/~ralfw/math467/

1. 3.3.1

\[\dot{n} = GnN - kn \quad (1) \]
\[\dot{N} = -GnN - fN + p \quad (2) \]

is a model for a laser, more realistic than that treated in class; \(N \) is the number of excited atoms, \(n \) the number of laser photons, and we let the bifurcation parameter be the pump strength \(p \). We simplify this to a one-dimensional system by the quasistatic approximation:

(a) Assuming \(\dot{N} \approx 0 \), we find \(N(t) \approx p/(Gn(t) + f) \); substituting, we derive the first-order system for \(n(t) \),

\[\dot{n} = \frac{Gpn}{Gn + f} - kn \equiv h(n). \]

(b) The fixed points (found from \(\dot{n} = 0 \)) are given by \(n^* = 0 \) and \(n^* = (Gp - kf)/kG \). The stability of the fixed point \(n^* = 0 \) is given from

\[\frac{\partial h}{\partial n} \bigg|_{n=0} = \frac{Gpf}{(Gn + f)^2} - k \bigg|_{n=0} = \frac{Gpf}{f^2} - k = \left(\frac{Gp}{kf} - 1 \right) k. \]

Hence \(n^* = 0 \) becomes unstable when \(p > p_c = kf/G \).

(c) We expect a transcritical bifurcation, since \(n^* = 0 \) is always a fixed point, and there is no symmetry; also, the two fixed points coincide when \(p = p_c \).

Check by expanding near \(n^* = 0 \):

\[h(n) = Gpn(f + Gn)^{-1} - kn = \frac{Gpn}{f} \left(1 + \frac{Gn}{f} \right)^{-1} - kn \]
\[= \frac{Gpn}{f} \left(1 - \frac{G}{f} n + \frac{G^2}{f^2} n^2 - \ldots \right) - kn \]
\[= \left(\frac{Gp}{f} - k \right) n - \frac{G^2 p}{f^2} n^2 + O(n^3), \]

which yields the transcritical bifurcation normal form near \(n^* = 0 \), and the bifurcation value \(p_c = kf/G \).

(d) A typical time scale for decay of \(n \) is \(1/k \), for decay of \(N \) is \(1/f \). We expect that the adiabatic approximation is valid if \(N \) equilibrates rapidly to changes in \(n \), that is, if \(N \) relaxes over much shorter time scales (or decays much more quickly), so we require \(1/f \ll 1/k \), or \(f \gg k \). This can be confirmed by a careful nondimensionalization.

2. 3.4.8

\[\dot{x} = rx - \frac{x}{1 + x^2} \equiv f(x, r) \]

(symmetric under the map \(x \mapsto -x \)).

The fixed point \(x^* = 0 \) exists for all \(r \). There are nontrivial fixed points satisfying \(r - 1/(1 + x^2) = 0 \), or \(x^* = \pm \sqrt{1/r - 1} \); these exist provided \(1/r - 1 > 0 \), or \(0 < r < 1 \).
We determine the stability of the fixed point at the origin by computing

\[\left. \frac{\partial f}{\partial x} \right|_{x=0} = r - \left. \frac{1 - x^2}{(1 + x^2)^2} \right|_{x=0} = r - 1, \]

indicating that \(x^* = 0 \) is linearly stable for \(r < 1 \) and unstable for \(r > 1 \), so we expect a *subcritical pitchfork* bifurcation at \(r = 1, x = 0 \). We can verify this by expanding near the bifurcation point \(x = 0, r = 1 \), and comparing with the normal form:

\[f(x, r) = rx - x(1 + x^2)^{-1} = (r - 1)x + x^3 + O(x^5), \]

confirming the presence of a subcritical pitchfork bifurcation at \(r = 1, x = 0 \).

![Bifurcation diagram](image)

Figure 1: Bifurcation diagram \(r = 1/(1 + x^2) \), showing the subcritical pitchfork bifurcation; solid lines indicate stable branches, dashed curves are unstable.

What happens to the (unstable) nontrivial fixed points \(x^* = \pm \sqrt{1/r - 1} \) at \(r = 0 \) (they collide with \(x^* = 0 \) at \(r = 1 \))? Note that these fixed points satisfy \(|x^*| \to \infty \) as \(r \to 0 \); and in fact they collide with the “point at infinity”:

To study the behaviour near infinity, set \(y = 1/x \), then \(|x| \to \infty \) corresponds to \(y \to 0 \). We find the differential equation for \(y \) using \(\dot{y} = -\dot{x}/x^2 \), and substituting \(x = 1/y \); after some algebra we find

\[\dot{y} = (1 - r)y - \frac{y}{1 + y^2}; \]

expanding near \(y = 0 \) (that is, near the “point at infinity”),

\[\dot{y} = -ry + y^3 + O(y^5). \]

Thus \(y = 0 \) is unstable for \(r < 0 \), stable for \(r > 0 \); as \(r \) decreases through 0, \(y = 0 \) undergoes a subcritical pitchfork bifurcation, so for \(r > 0 \), there are two unstable fixed points \(y^* = \pm \sqrt{r/(1 - r)} \) (that is, \(x^* = \pm \sqrt{(1 - r)/r} \)), which bifurcate from \(y = 0 \), that is, from the “point at infinity” in the original dynamical system.

3. **3.4.11**

\[\dot{x} = rx - \sin x \]

(a) For \(r = 0 \), we have \(\dot{x} = -\sin x \), with fixed points at \(x = n\pi, n = 0, \pm 1, \pm 2, \ldots \). The fixed points with \(n \) even are stable, \(n \) odd are unstable.

(b) When \(r > 1 \), the unique fixed point is an unstable fixed point at \(x = 0 \).
Figure 2: Vector field for $r = 0$; solid circles indicate stable fixed points, open circles show unstable equilibria.

Figure 3: Plot of rx and $\sin x$ for $r = 2$, showing that for $r > 1$ there is a unique fixed point.

(c) The easiest way to study this problem is to look at intersections of the functions $f(x) = rx$ and $f(x) = \sin x$, which yield the locations of the fixed points. As r decreases through 1, the origin stabilizes in a subcritical pitchfork bifurcation, and two new unstable fixed points are created. As r decreases further, tangencies between rx and $\sin x$ occur successively at the second, third, fourth, . . . peak of $\sin x$; each of these is a saddle-node bifurcation generating a stable (for smaller $|x|$) and unstable (larger $|x|$) fixed point. Due to the symmetry $x \mapsto -x$, each bifurcation occurring for positive x values is twinned to a simultaneous bifurcation at negative x values. In summary, there are infinitely many pairs of saddle-node bifurcations as r decreases from ∞ to 0.

Figure 4: Plot of rx and $\sin x$ for successively decreasing values of r; as the straight line becomes tangent to and then intersects successive peaks of the sine function, there are infinitely many saddle-node bifurcations (in pairs).

(d) The nth bifurcation ($n > 1$) involves the tangency of rx with the nth positive peak of the sine function, which is centered at $x = (2n - 3/2)\pi$ (for $x > 0$; with a simultaneous bifurcation for $x < 0$). For small r, or large n, the line rx has slope near 0, and the tangency occurs near the maximum of the peak, that is, near $x_n \approx (2n - 3/2)\pi$, where $\sin x \approx 1$. Thus the nth bifurcation value of r satisfies, for large n, $r_n x_n = \sin x_n \approx 1$, so $r_n \approx 1/x_n = 1/(2n - 3/2)\pi$.
Figure 5: Plot of rx and $\sin x$ for $r = r_5 = 1/(2 \cdot 5 - 3/2)\pi$, showing that this is the (approximate) 5th bifurcation value of r.

(e) As decreases from 0 to $-\infty$, pairs of fixed points collide in (infinitely many) saddle-node bifurcations and are annihilated, until for sufficiently negative r (less than about -0.22) the only remaining fixed point is the stable fixed point at $x = 0$.

Figure 6: Plot of rx and $\sin x$ for negative and decreasing values of r; pairs of fixed points are successively annihilated in saddle-node bifurcations.

(f) The bifurcation diagram is given by the curves $x = 0$ and $r = \sin x/x$.

Figure 7: Bifurcation diagram $r = \sin x/x$; solid lines indicate stable branches, dashed curves are unstable.

4. 3.4.12 Quadfurcation
A saddle-node bifurcation has the normal form $\dot{x} = r - x^2$: no fixed points for $r < 0$, two fixed points for $r > 0$, bifurcating from $x = 0$.
A pitchfork “trifurcation”, with $\dot{x} = rx - x^3 = x(r - x^2)$, has one branch of fixed points for $r < 0$, three branches for $r > 0$, bifurcating from $x = 0$.
One possibility to construct a “quadfurcation” is to have multiple saddle-node bifurcations occurring simultaneously: for example, for
$$\dot{x} = r - (x - 1)^2(x + 1)^2,$$
for \(r < 0 \) there are no fixed points, while for \(r > 0 \) there are four branches of fixed points; at \(r = 0 \), saddle-node bifurcations occur simultaneously at \(x = +1 \) and \(x = -1 \).

We can extend this idea to arbitrarily many branches of fixed points: for \(n = 1, 2, 3, \ldots \), let \(x_1, x_2, \ldots, x_n \) be \(n \) distinct real numbers. Then the (even-order) dynamical system

\[
\dot{x} = r - (x - x_1)^2(x - x_2)^2 \cdots (x - x_n)^2 = r - \prod_{j=1}^n (x - x_j)^2
\]

has no fixed points for \(r < 0 \), and \(2n \) fixed points for \(r > 0 \), born out of \(n \) simultaneous saddle-node bifurcations at \(r = 0 \).

Similarly, the (odd-order) system

\[
\dot{x} = x \left[r - (x - x_1)^2(x - x_2)^2 \cdots (x - x_n)^2 \right]
\]

has a fixed point at \(x = 0 \) for all \(r \), and \(2n \) new fixed points created (in saddle-node bifurcations) as \(r \) increases through 0.

Here is another approach to obtaining a “quadfurcation”, and by extension, multiple branches: Consider for instance

\[
\dot{x} = -(r - x^2)(2r - x^2),
\]

which has no fixed points for \(r < 0 \), and four branches of fixed points for \(r > 0 \), at \(x = \pm \sqrt{r} \) and \(x = \pm \sqrt{2r} \); all emerge from \(x = 0 \) at \(r = 0 \). Note that the upper fixed point at \(x = +\sqrt{2r} \) is stable, as is the point \(x = -\sqrt{r} \).

We can generalize this as follows: let \(a_1, a_2, \ldots, a_n \) be \(n \) distinct positive real numbers, \(a_j > 0 \); without loss of generality, choose \(0 < a_1 < a_2 < \cdots < a_n \). Then the dynamical system

\[
\dot{x} = (-1)^{n+1} \left(a_1 r - x^2 \right) \left(a_2 r - x^2 \right) \cdots \left(a_n r - x^2 \right)
\]

has no fixed points for \(r < 0 \), and \(2n \) fixed points for \(r > 0 \), all created in a bifurcation at \(r = 0 \), \(x = 0 \); with the given choice of sign, the largest fixed point, at \(x = +\sqrt{a_n r} \), is stable for \(r > 0 \).

Similarly, the system

\[
\dot{x} = (-1)^{n+1} x \left(a_1 r - x^2 \right) \left(a_2 r - x^2 \right) \cdots \left(a_n r - x^2 \right)
\]

has a unique (stable) fixed point at \(x = 0 \) for \(r < 0 \), and \(2n + 1 \) fixed points for \(r > 0 \), born in a generalized pitchfork bifurcation from \(x = 0 \), \(r = 0 \). If \(n \) is even, then \(x = 0 \) remains stable for \(r > 0 \) beyond the bifurcation.

5. **3.4.14 Subcritical Pitchfork Bifurcation**

\[
\dot{x} = rx + x^3 - x^5
\]

(a) The fixed points are \(x^* = 0 \) and the solutions of \(r + x^2 - x^4 = 0 \) (an algebraic equation in \(x^2 \)), with solutions

\[
x^* = \pm \sqrt{\frac{1}{2} \pm \sqrt{r + \frac{1}{4}}}
\]

(there are four nontrivial fixed points corresponding to four choices of sign \(\pm / \pm \)). When \(r < -1/4 \), none of the four nontrivial fixed points exists; they are all created in a saddle-node bifurcation at \(r = -1/4 \).

(b) See Figure 8, below.

(c) The (double) saddle-node bifurcation is at \(r = -1/4 \), as seen from the formula for the nontrivial fixed points in a) above; or from writing the dynamical system in the equivalent form

\[
\dot{x} = rx + x^3 - x^5 = x \left(r + \frac{1}{4} - \left(x^2 - \frac{1}{2} \right)^2 \right),
\]

from which it is clear that the fixed points are born at \(x = \pm 1/\sqrt{2} \) when \(r = 1/4 \).
Figure 8: (a)–(e): The vector field \(\dot{x} = rx - x^3 + x^5 \) and its fixed points (solid circle: stable; open circle: unstable) for (a) \(r < -1/4 \) (one stable fixed point); (b) \(r = -1/4 \) (saddle-node bifurcations: \(x = 0 \) is stable, the new fixed points at \(x = \pm 1/\sqrt{2} \) are semistable); (c) \(-1/4 < r < 0\); (d) \(r = 0 \) (subcritical pitchfork bifurcation); (e) \(r > 0 \) (one unstable and two stable fixed points). (f) Bifurcation diagram for subcritical pitchfork bifurcation, with saddle-node bifurcations at \(r = -1/4 \) and the pitchfork bifurcation at \(r = 0 \); solid curves denote stable branches, dashed curves are unstable.

6. Additional problem: Numerical Bifurcation Diagrams

The solution to (a) is given in the text and lecture notes. Following the description on the problem sheet, here is a set of Matlab commands that produces the desired plots for (b):

```matlab
% This file collects a sequence of commands to compute the bifurcation
% picture for the imperfect bifurcation problem of func3.

% Note that this is a set of commands that is obtained by some Matlab
% trial and error, and is a summary of the commands that worked... These
% commands shouldn't be run as a single M-file; in particular, at some
% points the value of b in the file func3 was changed.

% First, following (more-or-less) the instructions in the problem set,
% let's compute a nice bifurcation diagram for b = 0.1:
% x = -1:0.02:1.5;
figure(1);
cf;
plot(x, func3(x,1), 'b', [-1 1.5], [0 0], ':')
x1 = fzero('func3(x,1)', [-1 -0.5])
x2 = fzero('func3(x,1)', [-0.5 0.5])
x3 = fzero('func3(x,1)', [0.5 1.5])
% We find x1 = -0.9456, x2 = -0.1010, x3 = 1.0467
figure(2)
cf; hold on;
bifurcationplot('vfield3', x1, 1, -0.9, 4);
bifurcationplot('vfield3', x3, 1, -0.8, 3);
% Now save, print and annotate this figure
```
% Now compute similar bifurcation diagrams for \(b = 0 \) and \(b < 0 \).
% Change the 4th line of func3.m to read \(b = 0.0 \); (and save func3.m)
% We notice that we need a larger range of values of \(x \):
\[
x = -1.5:0.02:1.5;
\]
plot(x,func3(x,1),'b',[-1.5 1.5],[0 0],':');
x1 = fzero('func3(x,1)', [-1 -0.5])
x2 = fzero('func3(x,1)', [-0.5 0.5])
x3 = fzero('func3(x,1)', [0.5 1.5])
% We find \(x_1 = -1 \), \(x_2 = 0 \), \(x_3 = 1 \), which we could have written down
% immediately. However, we notice that for \(b = 0 \) this is a pitchfork
% bifurcation (which we also notice when we try to plot the bifurcation
% diagram), and the curves of fixed points cannot be integrated past the
% bifurcation point. Thus in order to obtain a branch for \(a < 0 \), we need
% to find a fixed point for negative \(a \).
plot(x,func3(x,-1),'b',[-1.5 1.5],[0 0],':');
% This plot shows that there is only a single fixed point for \(a < 0 \), at
% \(x_4 = 0 \), which we can find either analytically or numerically.
x4 = fzero('func3(x,-1)',[-1 1])

% Now plot the bifurcation diagram (the values of \(s_i \) and \(s_f \) used here were
% obtained by trial and error to get the best graphs).
figure(2); clf; hold on;
bifurcationplot('vfield3',x1,1,-1,4);
bifurcationplot('vfield3',x2,1,-3,2);
bifurcationplot('vfield3',x3,1,-1,4);
bifurcationplot('vfield3',x4,-1,-4,1.2);
% Save and print...

% Lastly, set \(b = -0.1 \) in func3.m
x = -1.5:0.02:1;
plot(x,func3(x,1),'b',[-1.5 1],[0 0],':');
x1 = fzero('func3(x,1)', [-1 -0.5])
x2 = fzero('func3(x,1)', [-0.5 0.5])
x3 = fzero('func3(x,1)', [0.5 1.5])
% We find \(x_1 = -1.0467 \), \(x_2 = 0.1010 \), \(x_3 = 0.9456 \) (symmetry with \(b=0.1 \))

figure(2); clf; hold on;
bifurcationplot('vfield3',x1,1,-0.8,3);
bifurcationplot('vfield3',x3,1,-0.9,4); % ... and save, print, ...
Figure 9: Bifurcation diagrams for $\dot{x} = b + ax - x^3$ giving the fixed points x^* as functions of a for (a) $b = 0.1$; (b) $b = 0$; (c) $b = -0.1$.