
Numerical Solution of Differential Equations:
MATLAB implementation of Euler’s Method

The files below can form the basis for the implementation of Euler’s method using Mat-
lab. They include EULER.m, which runs Euler’s method; f.m, which defines the function
f(t, y); yE.m, which contains the exact analytical solution (computed independently), and
ErrorPlot.m, which plots the errors as a function of t (for fixed h).

The structure of these programs is not optimal; for instance, you may wish to modify the
calling routine for the Euler method to pass the initial values, step size and number of
steps as parameters, instead of modifying them in the EULER.m file. I have not attempted
to optimize the code (which is taken from the Math 216 labs); my recommended software
for Math 256 is Maple, and a Maple implementation for Euler’s method is provided in a
separate file.

In order to solve a particular differential equation, you will need to define the function
f(t, y) in the file f.m, and also the exact solution in yE.m, if needed. The program
computes the step size h from the initial and final t values a and b, and the number of
steps N .

You will need to modify the algorithm in EULER.m (inside the for loop) to implement the
Backward Euler, Improved Euler and Runge-Kutta methods.

The file EULER.m

This program will implement Euler’s method to solve the differential equation

dy

dt
= f(t, y) y(a) = y0 (1)

The solution is returned in an array y. You may wish to compute the exact solution
using yE.m and plot this solution on the same graph as y, for instance by modifying the
second-to-last line to read
plot(t,y,’-’,t,yE(t),’-.’)

In this program, everything following a % is a comment. Comments give you information
about the program, but are not evaluated by the computer. You may choose whether or
not to type these comments into your program, but if you include the comments in your
file you must include the %, or the computer will try to read them.



clear t % Clears old time steps and

clear y % y values from previous runs

a=0; % Initial time

b=1; % Final time

N=10; % Number of time steps

y0=0; % Initial value y(a)

h=(b-a)/N; % Time step

t(1)=a;

y(1)=y0;

for n=1:N % For loop, sets next t,y values

t(n+1)=t(n)+h;

y(n+1)=y(n)+h*f(t(n),y(n)); % Calls the function f(t,y)=dy/dt

end

plot(t,y)

title([’Euler Method using N=’,num2str(N),’ steps, by MYNAME’])

% Include your own name

The files f.m and yE.m

The file f.m contains the function f(t, y) for the general differential equation (1) above;
the particular form of f(t, y) corresponds to the equation

y′ = 3 + t− y. (2)

To solve a different differential equation with EULER.m or another solver, you need only
change this file.

function f=f(t,y)

f=3+t-y; % Defines the function f

The file yE.m contains the exact solution y(t) = 2+ t− e−t of equation (2), corresponding
to the above function f(t, y) defined in the file f.m. If you solve a different differential
equation with EULER.m or one of the other numerical methods described below, and you
wish to compare with an analytical expression for the exact solution, you should modify
the file yE.m as well as f.m.

function yE=yE(t)

yE=2*ones(size(t))+t-exp(-t); % Exact solution yE

% Note the ones() command, creating a vector of ones.



The file ErrorPlot.m

Finally, we plot the error of the Euler method, or compare the error with that of other
numerical methods such as Improved Euler or Runge-Kutta. The file ErrorPlot.m helps
us do this (note: if the Improved Euler and Runge-Kutta methods have not been im-
plemented in files impEULER.m and RK.m, giving their solutions in arrays yI and yRK

respectively, then some of the lines below need to be modified or removed; this should
just be taken as a sample program). The errors will be plotted on a logarithmic scale,
where the logarithm of the error is plotted versus time. A “semilog” plot such as this
is particularly helpful when you wish to investigate a function, or several functions, that
take on values spanning many orders of magnitude. In order to plot the error (for a fixed
time t) as a function of h, we can produce a similar graph; the scaling of the error with
h is best seen in a “log-log” plot.

EULER % Runs Euler

impEULER % Runs ImpEuler

RK % Runs RK

yexact=yE(t); % Computes the exact solution

errE=abs(yexact-y); % Euler method error

errI=abs(yexact-yI); % Improved Euler error

errRK=abs(yexact-yRK); % Runge Kutta error

semilogy(t,errE,’:’,t,errI,’-.’,t,errRK,’-’)

legend(’Euler’,’ImpEuler’,’RK’)

xlabel(’t’) % Labels ‘‘x’’ axis

ylabel(’Error’) % Labels ‘‘y’’ axis

title([’Errors using N=’,num2str(N),’ steps, by MYNAME’])


