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Abstract 

For fluid flow one has a well-accepted mathematical model: the Navier-Stokes equations. Why, then, is the problem of 
turbulence so intractable? One major difficulty is that the equations appear insoluble in any reasonable sense. (A direct 

numerical simulation certainly yields a “solution”, but it provides little understanding of the process per se.) However, three 
developments are beginning to bear fruit: (1) The discovery, by experimental fluid mechanicians, of coherent structures 
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in certain fully developed turbulent flows; (2) the suggestion, by Ruelle, Takens and others, that strange attractors and 
other ideas from dynamical systems theory might play a role in the analysis of the governing equations, and (3) the 
introduction of the statistical technique of Karhunen-Loke or proper orthogonal decomposition, by Lumley in the case 
of turbulence. Drawing on work on modeling the dynamics of coherent structures in turbulent flows done over the past 

ten years, and concentrating on the near-wall region of the fully developed boundary layer, we describe how these three 
threads can be drawn together to weave low-dimensional models which yield new qualitative understanding. We focus 
on low wave number phenomena of turbulence generation, appealing to simple, conventional modeling of inertial range 
transport and energy dissipation. 

PACS: 47.27.N~; 02.70.Dh 

Keywords: Coherent structures; Karhunen-Loeve decomposition; Turbulence; Symmetry; Galerkin projections; 
Dynamical systems 
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1. Introduction 

In this article, we outline an approach to the construction of models of turbulent energy production 
which has been developed over the past IO-12 years. The methods apply to flows energetically 
dominated by coherent structures, and result in low-dimensional dynamical systems describing the 
interactions among small sets of such structures, which may then be studied via the techniques 
of dynamical systems theory. Analysis of the bifurcations, invariant structures and attractors in the 
phase spaces of these (relatively) tractable systems provides insight into physical mechanisms of 
turbulence production. The symmetries inherited from the original physical system and governing 
evolution equations play a crucial role in this enterprise. 

Before introducing the tools and techniques, we prepare the scene with a brief discussion of 
coherent structures and the problem of turbulence in Section 2, and with an overview of the dynamical 
systems viewpoint in Section 3. A major tool in our analysis is the Karhunen-Lo&e or proper 
orthogonal decomposition (POD), which provides an empirical basis for representations of complex 
spatio-temporal fields that is optimal in the sense that it converges (in L*-norm) faster on average 
than any other representation. We discuss this in Section 4, describing the key properties of optimality 
and symmetries, and the approximation of attractors. Equipped with the empirical basis, a subspace 
spanned by the energetically dominant empirical eigenfunctions can then be selected. We next project 

the governing equations onto this space, introduce a model to account for neglected effects due to 
truncation and spatial localization, and thus derive a relatively small set of ordinary differential 
equations (ODES). This process is illustrated in Sections 5 and 6 for the near-wall region of the 
turbulent boundary layer, and a sketch of some behavior of the models thus produced is given in 
Section 7. 

While we focus on the boundary layer application, the reader should regard it as primarily a vehicle 
to illustrate a more general approach. To put this work into context and suggest its broader appli- 
cability, in Section 8 we outline several other applications of low-dimensional models to turbulent 
and transition flows. 

We then return to consider in more detail some of the behaviors revealed by the boundary layer 
models presented in Sections 5-7. Specifically, to appreciate and illustrate better the role of sym- 
metry and one particular expression of it - heteroclinic cycles - that appears in some models, in 
Sections 9-l 1 we discuss symmetries in general, and the group O(2) of planar rotations and reflec- 

tions in particular. We use a simpler and more accessible nonlinear scalar PDE, the 

Kuramoto-Sivashinsky equation, which shares some of the behaviors of the boundary layer models, 
to demonstrate the appearance of heteroclinic cycles in symmetric systems. In Section 12 we mention 
random perturbation of heteroclinic cycles, prompted by the fact that the effects of the outer flow 

on the near-wall region of the boundary layer models may be replaced by a quasi-random pressure 
field at the outer edge of that region. Finally, Section 13 contains a brief summary and discussion. 

Even in the context of this review, we can merely indicate some of the key ingredients and ideas 
in an approach which involves several areas of applied mathematics and considerable knowledge 
of fluid mechanics and turbulence. For a fuller development and critical survey of this approach, 
we refer the interested reader to the book of Holmes et al. (1996) and the extensive literature 
cited therein, to which this article is heavily indebted. A shorter version of this article has also 
been prepared as lecture notes for a NATO Advanced Study Institute held at the Newton Institute, 
Cambridge, UK, in August 1995. 
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Over the last 20 or 30 years, studies of turbulent fluid motion have revealed aspects of organized 
motion in a wide variety of flows, i.e. there are large-scale ordered structures which, although neither 
steady in space nor time, persistently appear, disappear and reappear (see, for example, the articles 
in Lumley (1990), including Cantwell ( 1990) Holmes ( 1990) or Robinson ( 199 1)). The “roller” 
structures observed by Brown and Roshko ( 1974) in the mixing layer provide a particularly striking 

example; see Fig. 1. 
Flow visualization techniques and simulations have revealed coherent structures such as those in 

Fig, 1 quite clearly, but the structures typically vary considerably in space and time, and naturally 
their forms depend on the flow geometry and other conditions. This has made them hard to pin down, 
and sensitive conditional sampling techniques have been developed for their detection. Furthermore, 
their variability has precluded general agreement on their nature or even on a definition of coherent 
structures. However, it seems likely that such persistent macroscopic structure amidst the small-scale 
activity and fluctuations provides a “backbone” for many turbulent flows, and hence that analysis of 
the dynamics of these structures may provide a basis jbr improved understanding of some aspects 
of turbulence. It is this hope that motivated the studies described in the present article. 

For much of this article we shall use as our illustrative example the wall region of a turbulent 
boundary layer. The presence of the wall leads to a structure which is strongly three-dimensional, 
highly intermittent and in general more complex than in free shear flows such as Fig. 1. These 
structures involve persistent longitudinal (streamwise) vortices and low speed “streaks”, visualized 
via hydrogen bubble traces in Fig. 2 (Kline et al., 1967). For future reference, it is useful to establish 
the coordinates to be used in the wall region flow domain (see Fig. 3) in which we distinguish the 
homogeneous streamwise xl, spanwise x3, and inhomogeneous wall normal x2 directions, with the 
mean flow U in the streamwise direction. The most intense motions are at a scale which is small 
compared to the depth of the boundary layer; this, and the fact that the range of scales present in the 
whole layer would demand a prohibitively high-dimensional model, provides the motivation later for 
artificially limiting the domain in the x2 direction to the near-wall region. Also see Section 7.1 below. 

In fact, we shall take 0 I x2 i X2 = 40 in the nondimensional wall units appropriate to scaling of 
the inner wall layer (Tennekes and Lumley, 1972; also see Section 6.3). The typical space-time 
evolution of the observed coherent structures is complicated, often exhibiting a repetitive cycle of 
events, including the lift, oscillation and ejection of longitudinal boundary layer streaks, followed 

Fig. 1. A shadowgraph image of coherent structures in the turbulent mixing layer between Helium at 1015 cm/s and 
Nitrogen at 384 cm/s, at a pressure of 8 atm. and Reynolds number Re N 106. From Brown and Roshko (1974). 
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Fig. 2. Low-speed streaks visualized in the wall region of a turbulent boundary layer. Hydrogen bubbles are released into 
the fluid at evenly spaced intervals from a thin wire and photographed from above, looking towards the wall; the mean 

flow is from top to bottom. From Kline et al. (1967). 

Fig. 3. The wall region: coordinates and modeling domain. 

by sweep and reformation. A major characteristic activity of interest is the burst/sweep cycle, in 
which a “burst” of low-(streamwise-)speed fluid is forced up away from the wall (u, ~0, u2 >O), 
followed by a “sweep” of fast fluid moving back downward towards the wall (u, >O, u2 ~0). In this 
process the streaks break up and reform, often with a lateral spanwise shift. See Robinson ( 1991) 
for detailed descriptions. 

We expressed above the “hope” for deeper understanding of turbulence; what goals for further 
understanding might one have? After all, we have a closed system of equations for incompressible 
flow, the Navier-Stokes equations - see (22) and (23) - which are the expressions of momentum and 
mass conservation in the continuum limit and which are generally believed to be an excellent model 
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for subsonic flows at “reasonable” temperatures and pressures. So what is the problem? It is that we 
cannot solve these equations in any meaningful sense for physically relevant initial conditions; in 
fact, a general global existence and uniqueness theory for solutions in [w3 is still lacking (Doering 
and Gibbon, 1995)! 

What would one seek to “explain” ? There are many different scientific and technological questions 

pertinent to turbulence: On the one hand, one might wish to know how such complex spatial and 
temporally “random” motions could arise from the simple local laws of Newtonian mechanics - this 
may be understood, at least qualitatively, using ideas from dynamical systems theory, which was 
first applied to the study of turbulence by Hopf ( 1948) and Ruelle and Takens (1970). On the other 
hand, we might wish to calculate technologically important “averaged’ quantities such as the drag 
or mixing rates in a turbulent flow. A large variety of experimental, computational and theoretical 
techniques has been brought to bear on questions such as these, but much remains poorly understood. 
We express our hope in the work described here that a well-chosen but highly simplified model, 
a caricature of the system, which makes use of the presence of coherent structures to choose an 
appropriate basis for representing velocity fields, may enable the tools of dynamical systems theory 
to shed new light on the problem. 

3. The dynamical systems paradigm 

Central to the dynamical systems viewpoint is the concept of the attractor. In brief, an attractor 
is an invariant, indecomposable subset of phase space which attracts solutions originating from its 

exterior. Characterizing a system’s attractors is a significant step towards understanding its dynamics. 
Simply knowing that an attractor exists can be quite helpful. 

The seeds of our current effort were planted by Ruelle and Takens (1970), following Hopf (1948). 
Their hope was to reduce the dynamics of the Navier-Stokes (NS) equations, describing (turbulent) 
flow, to those on an attractor, and study their bifurcations and dynamics in the context of finite- 
dimensional flows and maps. The NS equations are infinite-dimensional, yet in special cases, they 
have been shown to possess a finite-dimensional attractor, and this is believed to hold in general 
(Temam, 1988; Doering and Gibbon, 1995). If we could choose a subspace S,, such that the attractor, 
d, and possibly other orbits asymptotic to it, formed a graph over S,,, then we could perform 
something akin to an inertial manifold reduction. Letting p and q be coordinates in S, and S,‘, 
respectively, the original system may be written as 

li=f(PYq) 9 4=dPYq). (1) 
Denoting q = h(p) as the graph of & above S,, we can project the flow on & to S, by letting 

P=~(P,~(P)). Th’ IS reduces the dimension of the system to that of S,,. The bad news for the 
rigorous application of such an idea is that by “finite dimensional” in the case of the Navier-Stokes 
equation, we indeed mean only “less than infinite”. Rough estimates on the dimension are on the 
order of Regi4, which gives 0( 106-109) dimensions for flows of scientific and technological interest. 
(Here Re = d/v is a Reynolds number formed from the turbulent velocity, U, the “integral” or 
energy-containing length scale, 1, and the kinematic viscosity, v.) 

Clearly a “simple” reduction to the attractor will not be sufficient to produce an ODE model 
of a size which might be studied analytically. Thus, we are prompted to seek, less ambitiously, 
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a subspace S,, which captures “most” but not all of the dynamics. In our investigations, we will take 
“most” to mean most of the kinetic energy on average. The naive picture we have is a conditional 
probability measure, ,u(q( p), p E S, and q E S:, sitting on the fiber Qp above each point p E S,,. 
Such a representation assumes the existence of a finite invariant measure for the dynamics so that 
the conditional distribution on the fiber above a base point is fixed in time, and can be averaged out 
of the dynamics in a time-independent fashion. The hope is that the behavior will be well described 
by the dynamics projected onto S,,, suitably augmented by the averaged effect of the neglected modes 

(Berkooz, 1994 ): 

p’ s e f(p&bW4. 
P 

In the absence of detailed a priori information on invariant measures, this idea will remain a vague 

dream; nonetheless, bolstered with substantial physical input, it will guide our modeling of neglected 

(2) 

effects. As we shall see, it seems essential to include some information on the neglected modes, 
both in wave number space and physical space, in analogy with the advantages of a center manifold, 
compared with a linear center eigenspace truncation. 

4. The proper orthogonal decomposition 

The existence of coherent structures, which contain most of the energy in certain flows, suggests 
that the drastic reduction in dimension postulated in the previous section might be achieved by 
a suitable modal decomposition which retains only these structures and appeals to averaging or 
modeling to account for the incoherent fluctuations. The proper orthogonal decomposition (POD) 
offers a rational way for building basis functions that emphasize such energetic features. 

The POD is a procedure for extracting a basis for a modal decomposition of functions, from 
an ensemble of “observations” obtained experimentally or from direct numerical simulation. It is 
attractive in that it is a linear procedure, based on the spectral theory of compact, self-adjoint 
operators, so its properties and limitations are clear. Moreover, the decomposition it affords is optimal 
in the precise sense described below. The POD was first introduced in the context of turbulence by 
Lumley ( 1967); in other fields it is known under various alternative names, notably the Karhunen- 
Lo&e decomposition. See Berkooz et al. (1993) for a more general discussion, and Holmes et al. 
(1996) for a detailed description, including proofs of the results cited below, other applications, 
and some historical perspective. Also see Sirovich (1987) for a general introductory survey, and 
Armbruster et al. (1994) for a description of publicly available software, KLTOOL, developed for 
POD analysis. 

The basic idea is straightforward: Suppose we have an ensemble {u”} of observations (experi- 
mental measurements or numerical simulations) of a turbulent velocity field. We assume that each 
uk belongs to an inner product (Hilbert) space X. Our goal is to obtain an orthogonal basis pj for 
X, so that almost every member of the ensemble can be decomposed relative to the qj: 

lZ= YFl ajcPj ) (3) 
j=l 
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where the aj are suitable modal coefficients. There is no a priori reason to distinguish between space 
and time in the definition and derivation of the empirical basis functions, but we ultimately wish to 
obtain a dynamical model for the coherent structures. Hence, here we shall seek spatial vector-valued 
basis functions qj, and subsequently determine the time-dependent scalar modal coefficients aj via 
projection of the governing equations; giving the specific space-time decomposition 

UCx3 t> = C uj(t>V~(x) . (4) 

Here x E Sz, where Q denotes the spatial domain of the experiment. Typically in fluid applications, we 
choose the Hilbert space X = [L2(Q)13 of vector-valued velocity fields, with an inner product defined 
by (f, g) = J, EYE, figf dx. (In fact, we further restrict to the subspace of divergence free vector 
fields, consistent with incompressible flows.) Central to the POD is the concept of the averaging 
operation (.), associated with a probability measure p on X, and which is assumed to commute 
with the spatial integral of the L* inner product. The operation (.) may simply be thought of as an 
average over a number of separate experiments, or, if we assume ergodicity, as a time average over 
the ensemble of observations obtained at different instants during a single experimental run. 

The discussion that follows may be justified rigorously, through a careful analysis of the averaging 
operation and the operators involved in the POD - see Holmes et al. ( 1996); here we present merely 
an overview. 

4.1. Derivation of empirical eigenfinctions 

In mathematical terms, a normalized basis element cp is optimal if the average projection of u 
onto 40 is maximized; i.e., we seek 

where 1 . / denotes the modulus and 11 . 11 is the L*-norm, llf]] = (f, f )“*. This can be reformulated 
in terms of the calculus of variations, with a functional for the constrained variational problem 

JLCPI = w (PI*) - 4114412 - 1). (6) 

A necessary condition for extrema is the vanishing of the functional derivative for all variations 

q+E$ EX: 

$Jb + 41 =o. 
E=O 

Some algebra, together with the fact that $(x) is an arbitrary variation, shows that the condition (7) 

reduces to 

s 
Q !u(n, t)u_*(x’, t)! q(d) dx’ = @(x) . 

R(x, x’ 1 

(8) 
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This is a Fredholm integral equation of the second kind whose kernel is the averaged autocorrelation 

tensor R(x, x’)Ef (11(x, t)u*(x’, t)), which we may rewrite as the operator equation Rq = kp. The 
optimal basis is thus given by the eigenfunctions of this integral equation. These are frequently 
called empirical eigenfunctions, since the basis is derived from the ensemble of observations {u”}. 
The operator R is clearly self-adjoint. Furthermore, under plausible conditions on the averaging 
measure p, R is also compact, so that Hilbert-Schmidt theory assures us that there is a countable 
infinity of eigenvalues {;1,} and eigenfunctions {qj} ( w ic h h we may normalize so that 1) 9 )I = 1) 
given by solutions of (8). We may order the eigenvalues so that 1, > Lj+l, and by the “first”, 
or leading, N eigenvalues (resp. eigenfunctions) we mean ;1i, &, . . . , AN (resp. (pl, cpz,. . . , (pN). Note 
that the positive semi-definiteness of R implies that 1, 1 0. This representation provides a diagonal 
decomposition of the autocorrelation function 

R(x, x’) = 2 rIj~(X)~,~(X’) e (9) 
J=l 

It is these empirical eigenfunctions that we use in the modal decomposition (4) above. We note that 
the diagonal representation (9) of the two-point correlation tensor ensures that the modal amplitudes 

are uncorrelated: 

(L!iLZT) = Sij;l, . (10) 

In applications, we wish only to retain eigenfunctions 9 with strictly positive eigenvalues Lj, i.e. 
those spatial structures having finite energy on average. It is natural to explore the nature of the span 
of these {cpj}, i.e. S= {Cajcpi ] ~j>O, C laj(* <oo}: which functions can be reproduced by conver- 

gent linear combinations of these empirical eigenfunctions. 7 It turns out that almost every member 
of the original ensemble {u”} (with respect to the probability measure underlying the averaging 
operation) belongs to S. Conversely, the elements of S (including the empirical eigenfunctions) may 

be constructed in terms of the {u”}: 

I9 ES * e(x) = c bJJ&X) . 

The span of the eigenfunctions is thus exactly the span of all the realizations of U(X), with the 

exception of a set of measure zero. Frequently, these realizations do not span X (much, but not 
everything happens in turbulence); in this case, the POD eigenfunctions {qj 1 Aj > 0) do not form a 
complete basis of [L2(Q)13, but rather they span only the smallest linear subspace that is sufficient to 
describe the observed phenomena - “you can only describe what you have seen before”. Inclusion 
of all generalized eigenfunctions of R with zero eigenvalues gives a complete basis, but in this 
completion one loses the major advantage of the POD: the possibility of a drastic reduction in the 
dimensionality of the system. 

(11) 

Note that from (1 1 ), one sees that properties common to all velocity fields u in the ensemble 
are inherited by the empirical eigenfunctions. In incompressible fluid flows, this means in particular 
that the qj satisfy the same linear boundary conditions as the velocity field, and are divergence free. 
As we shall see below, symmetries also pass onto the qj. 
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4.2. Optimality 

Suppose we have an ensemble member u(x,t), decomposed with respect to an (arbitrary) ortho- 
normal basis {$j}, 

(12) 

Using the orthonormality of the $j, from the above expression, twice the average kinetic energy per 
unit mass over the experiment is given by 

.I a 
(uu*) dx=C (bj(t)bT(t)) . 

i 
(13) 

Hence, (bjb,:) (no sum implied) represents twice the average kinetic energy in the jth mode. It 
follows that for the particular case of the POD decomposition (4) the energy in the jth mode is ;li, 
as claimed in ( 10). 

We may now state an optimal&y result for the POD: For any N, the energy in the first N modes in 
a proper orthogonal decomposition is at least as great as that in any other N-dimensional projection: 

N N N 

Ill&~ I)* = C ("jai") = C J-j L C lbjbJ) f (14) 
j=l j=l j=l 

This follows from a result on general linear self-adjoint operators (Temam, 1988): the sum of the 
first N eigenvalues of R is greater than or equal to the sum of the diagonal terms in any N- 
dimensional projection of R. Eq. (14) implies that, among all linear decompositions, the POD is the 
most efficient for modeling or reconstructing a signal u(x, t), in the sense of capturing, on auerage, 
the most kinetic energy possible for a projection on a given number of modes. This observation 
furnishes the motivation for the use of the POD in low-dimensional modeling of coherent structures. 
The rate of decay of the J.j gives an indication of how fast finite-dimensional representations converge 
on average, and hence how well specific truncations might capture these structures. 

One can, of course, define optimal bases with respect to norms other than the L* norm. Alternative 
choices of norm would simply weight characteristics other than the kinetic energy. For instance, an 
H’ Sobolev norm would give a basis better adapted to capturing dissipation (llVull*) or vorticity 
(V x u). 

4.3. Symmetries in the POD 

As indicated above, the empirical eigenfunctions inherit properties shared by all observations 
uk, including symmetries. For our purposes, the most important symmetry is spatial homogeneity. 
This is the condition that the averaged two-point correlation be translation invariant, i.e. it depends 
only on the difference between coordinates: R(x, JJ) = R(x - u). Translation invariance can occur in 
spatially unbounded as well as periodic systems. Furthermore, a system may be homogeneous in 
some directions and not in others. It is additionally important to recognize that, while the ensemble 
of realizations {u”} may be translation invariant on average, individual realizations typically are not. 
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Homogeneity is useful because in the homogeneous directions, the empirical eigenfunctions are 
simply Fourier modes: (P&X) 0: eikx. This is readily verified by substituting this Ansatz for the 
eigenfunctions into the definition (8) in the homogeneous directions, for an unbounded or periodic 
domain Q: 

I R(x - y)eiky dy = I R(q)e’k(x-q) dy = (I R(r)e-ik’l &, eikxdgffXkeikx . 
a a a 

(15) 

Hence, eikx is indeed an eigenfunction, with eigenvalue 1,; the eigenvalues being given by the 
Fourier transform of the averaged autocorrelation. (Note that this indexing of the eigenvalues, by 
their Fourier mode number, does not necessarily correspond to the ordering in decreasing magnitude 
which we introduced earlier; an analysis of the spectrum may show that a mode higher than the 
first contains the most energy. This occurs, for instance, in the Kuramoto-Sivashinsky equation, to 
be discussed in Section 11, and in the spanwise direction of the boundary layer - see Fig. 4. For 
consistency with our previous notation, we may reorder by introducing a permutation, j + k(j), so 
that Lj ‘= &(j), and Aj 2 lj+r.) 

The continuous symmetry of homogeneity, or translational invariance, is only one of many sym- 
metries that fluids may exhibit, depending on the experimental setup. A given system could be 
invariant under discrete symmetries, such as translations through multiples of some finite length, or 
discrete rotations, for example. Such discrete symmetries would occur in a boundary layer treated 
with riblets - &rakes parallel to the mean flow direction. In Sections 9 and 10 we shall investigate 
in greater depth the effect of translation and reflection symmetries on the dynamical behavior of the 
system. 

4.4. Approximating attractors 

In implementing the POD for low-dimensional modeling, we project the governing infinite- 
dimensional evolution equation, such as the NS equations, onto a finite-dimensional empirical sub- 
space, of possibly quite low dimension. The question naturally arises: How well does this truncation 
and projection approximate the attractor of the original dynamical system? 

For insight into this question, we appeal to an elementary inequality from probability theory, 
which gives an upper bound on the frequency of departures from the mean: 

Chebyshev’s inequality: Let x be a vector-valued random variable, with mean (x) and variance 
C* = ( 1 x - (x) I”). Then for any E > 0, 

(16) 

We may use this inequality to estimate the probability of the system evolution remaining close to 
a finite-dimensional subspace spanned by the first n empirical eigenfunctions, S,, = span{ (pi,. . . , cp,}. 

The projection onto the first n modes belongs to S,,; to estimate the error incurred by neglecting 
the remaining modes, we examine the infinite “tail”. To do this, we define an infinite-dimensional 
“slab” of thickness 2~ around S,,, 
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and let W,(&)=L2(Q)\&(&) denote the rest of phase space. To apply Chebyshev’s inequality to 
estimate the fraction of time spent in S,(E) by solutions u(x,t) = C,(u,~)(phz = C,,, a,,,%, we let 
yn denote the vector-valued random process 

J%(t) = ((4 %)XL+, . 

Then we have (y,) = 0 and a2(y,) = C,“=,+, (ama;) = CEzn+,/lm (from (lo)), and therefore, by 
Chebyshev’s inequality, 

P{u~S,(E)}=P{uEW,(&)}=P{ lVnl >&> L 5 u2. (17) 
m=n+l 

Now this inequality supplies a crude bound on how bad a given finite-dimensional truncation might 
be, but it does not yet indicate whether the solution converges onto an attractor; in particular, the 
expression is meaningless as E -+ 0 for fixed II. To get a useful convergence result, we need an 

estimate of the rate of decay of the residual eigenvalues in the tail, 1,. It turns out that there is 
much evidence, both physical and mathematical, that the residual decays at least exponentially fast 
asymptotically (in the far dissipative range). Physically, viscous dissipation smooths the velocity 
field at high wave numbers. The mathematical basis for this is Geurey regdarity of solutions of the 
evolution equations - see Foias and Temam (1989) for results on the Navier-Stokes equations - 
and the uniform exponential boundedness of the appropriate averages used in the POD; cf. Berkooz 
(1991). These results imply that, in the limit, & = o(exp( -en)), c > 0; of course, these are only 
asymptotic results, not directly applicable to the finite- and low-dimensional modes of interest to us, 
where we truncate far below the far dissipative range, but they do provide a guide. 

Equipped with the exponential decay of the empirical eigenvalues, we may then choose a sequence 
of E, -+ 0 so that additionally 

m=n+l 

for instance, we may take E, = o( exp( -dn)), for some d <c/2. This choice gives us a sequence of 
slabs S,(E) with thickness going exponentially to zero, while the probability that the solution is in the 
slab, goes exponentially to one. In this picture, we have an attractor which is very thin, even though 
very high or even infinite-dimensional. The thinning slabs capture more and more of the energy 
as we include more modes, and it is reasonable to postulate that the dynamics is controlled by a 
finite number of modes; this forms the basis for our work. Note that the above attractor may not be 
compact; however, it is possible to show that with exponential decay of the empirical eigenvalues, 
practically all the support of the invariant measure of the dynamics is contained in a compact set. 
For a further introductory discussion of these regularity results, see Berkooz et al. (1993). A fuller 
discussion of the POD, describing several other properties and applications, is given in Holmes 
et al. (1996). 

5. Representation of boundary layer flows 

The previous section provided a theoretical foundation for projection onto an orthonormal set of 
empirical eigenfunctions. We now describe how this is carried out in practice in a specific case. 
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A set of data is required in order to obtain the averaged autocorrelation tensor R(x,x’), whose 
eigenfunctions form the POD basis. The data could be experimental or numerical; the larger the data 
set, the better the statistics. The original study of Aubry et al. (1988) used eigenfunctions derived 
from experiments conducted by Herzog (1986) at Penn State, in a circular pipe at Reynolds number 
lie-6750, based on centerline velocity. Later studies used data sets obtained numerically by Moin 
and Moser (1989) and Moin (1984), for direct numerical simulations of channel flow at ReN3- 
4000, and large eddy simulations at Rew 13 800. Typically, experimental data sets are well resolved 
in terms of time averages, but may have poor spatial resolution; numerical data are well resolved 
spatially, but often too brief for good temporal statistics. 

In the data ensembles used in the work described below, the mean velocity U is subtracted at 
the outset (cf. Fig. 3). Thus, {u“}, R(x,x’) and the empirical bases qj produced represent the zero 
mean turbulent fluctuations alone. This removal of U is consistent with the decomposition of the 

full velocity field described in Section 6. 

5.1. Symmetries of the empirical eigenfunctions 

All of these data sets exhibit certain symmetries, which consequently carry over to the empirical 
eigenmnctions. In particular, the fully developed boundary layer, in either channel or pipe, is trans- 
lation invariant ’ (on average) in the streamwise and spanwise directions, and reflection invariant 
in the spanwise direction. The meaning of “on average” is that, while individual realizations of the 
velocity field are typically not translation or reflection invariant (coherent structures occur some- 
where), averaging over a sufficiently large ensemble does yield an autocorrelation tensor with that 
symmetry. In the light of the discussion in the previous section, this implies that the POD eigen- 
functions in those directions are Fourier modes, and may be labelled by their Fourier wave numbers. 
Indeed, translation invariance implies that R(x~,x~,x&,x~,x~) = R(x, - x~,x2,x&x3 - xi), where x1 
denotes the streamwise, x2 the wall normal and x3 the spanwise direction (recall Fig. 3). We may 
thus work with the power spectrum, and take the (discrete) Fourier transform of R in the 1 and 3 
directions (over domains of lengths L, and L3, respectively) to give &k,, k3;xz,xi). It is i whose 
eigenfunctions provide the empirical basis, $,(k,, k3; x2) = #$:,(x2), the corresponding eigenvalues 

ntlj describing the average energy content in each eigenfunction family (n), at each Fourier wave 
number pair (k,, k3). The domain size in the normal direction is &, and the eigenfunctions satisfy 

the orthonormality condition 

where $i is the ith component of 4, and summation over i is assumed. 
Fig. 4 shows the dependence of the empirical eigenvalues on spanwise Fourier wave number, 

derived from the data of Herzog (1986). The peak corresponds to the average streak spacing seen in 
Fig. 2. In the streamwise direction, the spectrum is peaked at k, = 0, indicating considerably longer 
scales in this direction. We will draw on this empirical eigenvalue spectrum in choosing specific 
truncations, below. 

’ In the case of pipe flow, “spanwise translation” corresponds to rotation about the axis. 
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Fig. 4. Empirical eigenvalue spectra for the near wall region: A(“) as a function of (a) spanwise wave number k3/L3, (b) 

streamwise wave number kl/LI . From Herzog ( 1986). 

In addition to translation invariance, the eigenfunctions 4(x2) inherit other symmetries from those 
in the experimental or numerical two-point correlation tensor (see Section 4.3). In particular, when 
taken together with the Fourier modes, the eigenfunctions are divergence-free; furthermore, there is 
reflection symmetry about a midplane in the spanwise direction, and the entries of the tensor are 
real. In terms of the eigenfunctions, these last two symmetries imply 

4’“’ _ = ((p” p* p* ) 

ki k, Ih,k) ’ &,a, 3A,k, . 

(18) 

Consistent with the observations and empirical eigenfunctions derived from them, the NS equations 
(with periodic boundary conditions in the x1 and x3 directions) themselves display the same symme- 
tries, namely equivariance under translations and reflections in the spanwise direction and translation 
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in the streamwise direction: 

x3 H x3 + 53 > x3 ++ --x3 2 Xl H Xl + r, * (19) 

5.2. The modal expansion 

In terms of the eigenfunction expansion (4), the eigenfunctions a(x) thus consist of Fourier modes 
in the xl and x3 directions, and the above functions $Ei, in the x2 direction. The index n represents 
a family of empirical eigenfunctions, for different values of kr and k3 (the energy of a family of 
eigenfunctions is derived by summation over the wave numbers ki and k3). The full expansion, in 
the form (4), for the ith component of the velocity field (where i = 1,2,3) is thus 

k3=-cc 

The symmetry (18) implies for the modal coefficients 

@) _ (n)* 
‘k,k, - ‘-k, -k3 3 

(20) 

(21) 

guaranteeing reality of the velocity field. 
After substituting (20) for the velocity field into the Navier-Stokes equations, truncating at some 

finite number of modes n = N, k, = +K,, k3 = HC3, and taking the inner product with each included 
mode in turn, we obtain a finite system of ODES for the amplitudes atb,(t). It is this system that 
we derive in the next section, and whose properties we shall subsequently study. We will consider 
specific choices for length scales Lj and truncation wave numbers Kj,N in Section 7. 

6. Projection of the NavierStokes equations and modeling 

We first rewrite the NS equations in a type of Reynolds decomposition that isolates the dynamics of 
coherent structures and their interaction with the mean flow; both the neglected (high) wave number 
modes and the mean flow are modeled. Next, we project the NS equations onto the empirically 
obtained family of subspaces, using a Galerkin projection. Lastly, we truncate the system - in fact, 
rather drastically - in order to obtain a finite- and low-dimensional system that is amenable to 
analysis and understanding. Several assumptions are necessary in the projection process, and they 
will be touched on and justified here briefly; the reader should refer to Holmes et al. (1996) for 
more details. 

We begin with the incompressible Navier-Stokes (NS) equations without body forces, for the 
fluid velocity field u(x, t) and pressure field rc(x, t): 

u, + V. vu = -( l/p)Vx + vv*u ) (22) 

v.u=o. (23) 

We choose periodic boundary conditions in the streamwise and spanwise directions, i.e. on x1 = 0, LI 
and x3 = 0, L3, no slip boundary conditions on the wall, that is u = 0 on x2 = 0, and an as yet 
unknown boundary condition u =f(x, ,x3, t) on the upper edge of the wall layer x2 =X2. 
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6. I. Reynolds decomposition 

We first perform the Reynolds decomposition of the fluid into a mean flow and a fluctuating field, 
v = U + u, 7c = P + p, where U = (u)~ and P E (7~)~ are spatially averaged quantities in the xl, x3 

directions; for instance, 

U(x2, t) = (u)~ = & /” /-” u(x,,x2,x3, t) dx, dxj . 
130 0 

If L, and L3 are large enough, the mean flow U= U(x2, t)e, is in the streamwise xl direction, and 
has a slow enough time dependence that we can neglect U, relative to uy. 

Averaging (22), we obtain the equation for the mean flow, 

u,+u~Vu+(u~Vu),+(l/p)VP-vV2u=o, (24) 

where (u.Ou), is the Reynolds stress term. Subtracting the mean equation (24) from (22), we obtain 
an evolution equation for the turbulent fluctuations, 

u,+u.Vu+u.Vu+u.Vu-(u.Vu),+(l/p)Vp-vV2u=o. (25) 

Noting that U. VU = 0, and assuming U, M 0 and that streamwise and spanwise variations of mean 

quantities are negligible, we may obtain an approximation for the Reynolds stress from (24), in 
component form, 

(%.j”j)s = - (l/P)<i + v”,22dil Y (26) 

where the comma denotes partial differentiation, for instance, ui,j G aui/axj and U,,, = a2U/ax,2. 

6.2. The mean flow 

In order to close the equations for u, we need to model the mean flow in some way. In Aubry 

et al. (1988), the mean flow was expressed as a balance between the effects of pressure and those 
of the coherent structures. Similar strategies have been adopted for other flows, see Section 8. Order 
of magnitude estimates, which may be justified by asymptotic calculations through manipulation of 
the first and second components of (26), give 

uG2, t) = t lx* (w2)s(x;, t> dx; + (4/v)(x2 - x;/2H) ; (27) 

see Holmes et al. (1996) or Berkooz et al. (1993b). Here the first term on the right-hand side 
is due to the feedback from the turbulent bursts into the “locally averaged” mean flow that cause 
U to collapse as (u,u~)~ undergoes a (negative) Reynolds stress burst, while the second term is a 
“constant” driving term corresponding to the mean pressure gradient. Here u, is the friction velocity 
giving a measure of the shear stress at the wall, defined by ut = vaU/ax21X2=o, and we assume x2 < H, 
where H is half the width of the channel. Substitution of (27) into the full Eqs. (25) yields a closed 
system amenable to further analysis. An important property is that the first part of the expression 
for the mean flow gives rise to a cubic term in the full system, which implies global stability for 
the final dynamical system. Early studies (Aubry, 1986, unpublished) with a constant mean profile 
U(x2) showed that solutions of (25) typically grew without bound. 



354 P.J. Holmes et al. IPhysics Reports 287 (1997) 337-384 

The key idea in deriving the feedback model of (27) is that, while the model domain [O,L,] x 
[0,L3] should be large enough in the streamwise and spanwise directions that the assumptions on 
unidirectionality of U and magnitude of U, in Section 6.1 hold, it must also be small enough that 
relatively few basis functions are required to capture the bulk of the turbulent energy. This size 
limitation implies that the time dependence of the mean U = (u)&~, t) cannot be neglected: as the 
initial studies noted above indicated, for realistic energy input it must be allowed to respond to local 
turbulent activity in the domain. 

6.3. Losses to neglected modes and normalization 

The next step in the analysis is to take account of the fact that we will be performing a rather 
violent truncation, only retaining modes that are linearly unstable or weakly stable, without keeping 
“stable” modes that are nevertheless dynamically active. With this drastic truncation the energy cas- 
cade mechanism that forms the basis for the turbulent energy transfer from long to short wavelength 
modes is lost, and must be modeled; otherwise, the overall energy balance, in which the small-scale 
turbulent motions act as energy sinks for the coherent structures, is upset. To obtain such a model, 
we further decompose the turbulent velocity field into resolved components u,, representing the co- 
herent structures, and unresolved smaller scale components U, : u = u, +u, ; and we project Eq. (25) 
(with (27)) onto the subspace of resolved components. Once again, in order to have a closed system, 
we need to model the small-scale u, in terms of the larger scales u,. For this, we use a Heisenberg 
spectral transfer model, or eddy viscosity mechanism; for details, see Holmes et al. (1996, Ch. 9). 
In the modeling, two “free” parameters c(i and a2 are introduced, which should both be of order one, 
but which can be adjusted to obtain the appropriate energy flow to the unresolved modes (cf. (28) 
below). These parameters (which, for simplicity, are later equated) lead to a bifurcation parameter 
in the dynamical system model. 

Before writing down the restricted partial differential equation for the resolved modes (the coherent 
structures), we normalize the equations using wall units. That is, given the friction velocity U, and 
viscosity v, the units of length, time and velocity are v/u,, v/u: and Us, respectively; the unit of 

pressure is pug, and we denote normalized pressure by p”. In such wall variables, all wall bounded 

flows with the same pressure gradient look the same; in particular, the Reynolds number in wall 
units is unity, so that viscosity does not appear in the normalized equations. Thus, using (27) in (25) 
and employing the Heisenberg model, the evolution equations for the coherent structures become 

+(I + alvT)ui,jj - [(%j”j) - (R,juj)sl + ~~*~2>[(Uk,, + U[,k)(Uk,[ + U[,k) 

-(t”k,I + Ul,kXUk,[ + U/,k))l,i - P,: * (28) 

Here vr and 1, are a viscosity and length scale characteristic of the unresolved modes, which are 
model parameters implicitly dependent on the domain size and wave number cutoff; we omit the 
subscript < on u< . 
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6.4. Galerkin projection 

We now perform Galerkin projection onto the empirical subspace S,,, substituting the modal de- 

composition (20) into (28). In this there are two steps: Fourier transformation in the xl, x3 directions, 
followed by taking the inner product with the empirical eigenfunction ~I:;,(.Y~). The details for the 

Galerkin projection, and the considerable algebra involved, are omitted here; see Holmes et al. (1996) 
for explicit expressions and numerical values for the coefficients. The process of Galerkin projection 
will be described in more detail for the far simpler case of the Kuramoto-Sivashinsky equation in 
Section 11. 

The final result of this process is a system of the form 

~=[AI + (1 + a1vrV2la + [Q,(a,a) + +2~;Q2bw)l+ C(a,u,a) + 5(t), (29) 

where a denotes the vector of modal coefficients a@) k,,k3(t), and the terms Aju, Qj and C are, respec- 

tively, linear, quadratic and cubic terms in a. 

6.5. The pressure term 

Of particular interest here is the additive “forcing” r(t), which represents a boundary pressure 
term. In typical projections of the Navier-Stokes equations on divergence-free bases, the pressure 
gradient is eliminated by integration by parts, but in our case an unusual boundary condition is 
applied in the wall normal direction - a spatial cutoff at X2 = 40 wall units, quite near the wall. As 
noted in Section 2, to obtain a reasonably low-dimensional description, we want to model only the 
wall region, and so some such cut-off or weight function must be used. 

We briefly indicate how the term l(t) arises: By the divergence theorem, we have the identity for 
the inner product between the gradient of a scalar, Vp, and a divergence-free vector U, 

(vp,u)= lVpdx= /--n.(puW. 

where ld denotes the unit normal on the boundary ?I52 of the domain n. In the present case, after 
Fourier transformation and projection onto the empirical eigenfunctions, which are also divergence- 
free, we have 

(VP, 4) = 1”’ I’ I” Op. 4 dx3 dx2 dx, 

(30) 
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The first and third terms on the right-hand side cancel identically because of periodic boundary 
conditions in the xl, x3 directions, while the middle term at x2 = 0 also vanishes, since the empirical 
eigenfunctions satisfy the no-slip condition at the wall. However, the remaining term survives, as 
the empirical eigenfunctions do not vanish on the upper edge of the wall region. The normalized 
pressure term thus transforms as 

(31) 

Note that in the projection process the (unspecified) velocity boundary condition VI,, =X, =f(xl ,x3, t) 
has been replaced by a scalar pressure field 3. 

The conditions at this boundary are still not specified within the model, but must be estimated or 
supplied from independent computations. However, the presence of this pressure term is a potentially 
useful feature of the model, since the pressure field at x2 =& represents communication between 
the modeled wall layer and the outer region of the flow; as such, one can compare results obtained 
when it is present and absent, and hence distinguish between inner and outer influences on the 
dynamics in the wall layer. (Note that the quadratic pseudo-pressure term Q2 also arises due to the 
“free surface”, and would vanish otherwise; however, it is small compared to Q, and its effects may 
often be neglected.) 

Replacement of a vectorial velocity boundary condition by a scalar appears to contradict require- 
ments for well-posedness of the PDE (28) (Zhou and Sirovich, 1992), but as argued by Berkooz 
et al. ( 1995, unpublished), it can be shown that, if an inertial manifold exists, then specification 
of pressure boundary conditions does indeed result in a well-posed problem. (The proof relies on 
studies of finite-dimensional representations of the flow on the inertial manifold.) See Holmes et al. 

( 1996, Section 12.4) for more information. 
A simple approach to modeling the pressure field is to replace S(t) by small additive random 

excitations characteristic of disturbances in the outer layer. Order of magnitude estimates indicate 
that typically Isi/aiI N 0( 10p2), so that to a first approximation one can ignore such an additive 
random term. Later in Section 12, the effect of noise will be included, and we shall be able to 

distinguish between inner and outer layer effects and see that the term T(t) may play an important 

role. 

7. Structure and some solutions of the models 

In the previous section, we outlined the Galerkin projection, which yields a system of ordinary 
differential equations from the NS equations. This process in fact produces a nested hierarchy of 
models, containing increasing numbers of modes, as one seeks to approximate a lesser or greater 
fraction of the average energy by choosing L,, L3, X2 and Kr , &, N in the truncated representation 
(20) appropriately. One must balance the inclusion of more modes, which implies a better represen- 
tation of the velocity field (in terms of energy captured), with increasing dimension, which renders 
the ODES more unwieldy, analytically complicated, and opaque. Ideally, we would like to study 
systems that are as small as possible, but will still yield relevant results. 
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7.1. Choice of truncation 

357 

With this in mind, the original system studied (Aubry et al., 1988) was a severe truncation which 

incorporated only a single family of eigenfunctions (N = 1) and a single streamwise Fourier mode 
(K, = 0); i.e. the velocity fields have no streamwise dependence. In the spanwise direction, up to 
K3 = 8 modes were initially included, although almost all studies were done with K3 = 5. The reasons 
for this choice and the choice of length scales Lr, L3 and X2, were the following. 

We wish to reproduce the cross-stream interactions that contribute to the observed turbulent bursts. 
It appears that a spanwise domain length of L3 = 333 and five nonzero modes (K3 = 5) can achieve 
this, being large enough to permit the interaction between two eddy pairs that lead to bursts. One 
must certainly include wave numbers characteristic of the spanwise energy spectrum exhibited by 
the empirical eigenvalues, with one near the peak and enough “interstitial” wave numbers to afford 
realistic interactions; see Fig. 4. 

In the streamwise direction, the eigenvalue spectrum as a function of streamwise wave number 
peaks at the origin, indicating a long recurrence period for coherent structures in the streamwise 
direction. It thus seems plausible to consider at first coherent structures with no streamwise variation, 
and it hence does not matter how long the domain is in that direction (L, = 333 was chosen by Aubry 
et al. (1988)). 

In the direction normal to the wall, a distance of X2 = 40 in wall units was chosen. In this 
direction, there are the conflicting requirements of, firstly, resolving as much as possible of the 
coherent structures, which extend well into the flow; while, secondly, avoiding excessive complexity, 
as further from the wall, the range of spatial scales and consequently the number of excited degrees 
of freedom increases - see Moin (1984), for example. The above choice is a compromise, which 
permits us to retain just one family of empirical eigenfunctions for now. 

Having chosen Ki, ZCJ and N, we may write down the modal equations for the velocity field 
which, being constant in the streamwise direction, we may term “two-and-a-half-dimensional”. The 
decomposition (20) reduces to 

u(x,t)= 2 abl:, (t)e2rri(k31L3 )x3 f#$:, (x2) , (32) 
k, = -K1 

and the ODES (29) simplify considerably; in component form they become 

-t 

[ 
x Q: k-ktak’ak-k’ + $1:x Qf k_k!ak’ak_k’ 

+(k I) 
k’ 1 

kk’ ok’ 2 ak f (k(t), (33) 
k’ 

where ak = ah:13, and we have set the loss parameters al = a2 = a. That is, in this special case, the 

linear terms become diagonal, simplifying the analysis considerably, and the cubic terms also take 
a simple form. In fact, the overall structure is similar to that of the Fourier mode projections of the 
single space dimensional Kuramoto-Sivashinsky equation described in Section 11. 
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As already noted, the cubic terms are of particular importance here, as they guarantee stability. 
The coefficients CM1 turn out to be all negative, so that one can construct a Liapunov function and 
hence demonstrate the existence of an absorbing ball B for the dynamics. The attractor may then 
be found as the image of B asymptotically in time: d = ntaO cpt(B), where cp is the dynamical 
evolution operator. 

Specific coefficients A:, QL k_k,, C& for the case K3 = 5 are tabulated in the appendix of Aubry 
et al. (1988); however, we note that a multiplicative factor of m was inadvertently omitted 
from the left-hand sides of the ODES analogous to (33) in that paper, leading to a compression 
of time scales by 333. This led to an erroneous interpretation of bursting timescales, which was 
corrected by Sanghi and Aubry (1993) without discussion of its implications. We return to this issue 
in Section 12. 

7.2. Symmetries 

Eq. (33) with the pressure term <k(t) set to zero (which we will assume in this section), is 
equivariant under the group O(2) of rotations and reflections in Fourier space, corresponding to 
spanwise rotations by c3 and reflection. Specifically, as shown in Eqs. (36)-(39) below: 

Ts3 : x3 H x3 + & becomes Tc, : ak w e Zni(klb KX 
ak , (34) 

R,: x3 H -x3 becomes Rf : ak H ai . (35) 

Section 9 contains further discussion of symmetries; equivariance here simply means that elements 
of O(2) map solutions to other solutions. Note that our ODE is just the restriction of (29) to the 
subspace ki = 0; the symmetry under streamwise translations is not included explicitly here, since 
all non-zero streamwise modes have been excluded in the modal representation (32). 

By reality of the vector field, we have a;(t) = a-k(t), so that we only need to solve a set of K3 
complex ODES, or 2K3 real ones. For K3 = 5 we thus have a lo-dimensional model system, one that 
is highly truncated but, as we shall see, is still quite interesting. 

It is useful to consider not only symmetries, but also invariant subspaces in this system; these 
provide a “backbone” for further analysis. Eq. (35) implies that the purely real subspace is invariant, 
as is any rotation of it under Tc, (34). Similarly, the structure of the quadratic and cubic terms 
of the ODES implies that the subspace spanned by the even Fourier modes k = 2,4,. . . is also 
invariant. These lower-dimensional subspaces allow us to “parse” the system and achieve a partial 
understanding of its bifurcations and dynamical properties. (Note also that the K, = 0 system is 
invariant in higher-dimensional systems with streamwise variation having only the first family N = 1 
of empirical eigenfunctions, so the results of the K, = 0 study are useful for later work in which 
K, > 0.) 

7.3. Behavior of the models 

The lo-dimensional model equations (33) for K3 = 5 were studied by Aubry et al. ( 1988), and 
their behavior is briefly outlined here. Numerical integrations of the ODES (33) were done using 
a fixed step Runge-Kutta method, and bifurcation analyses were performed on the system. The 
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Fig. 5. Time histories of the modal coefficients, for c( = 1.4; from Aubxy et al. (1988) 

time-dependent amplitudes obtained from the integration were then substituted back into the expan- 

sion (32) to reconstruct time and space behavior of the velocity field as predicted by the model. 
A typical result of such a simulation for the modal coefficients is given in Fig. 5 (where xi, yi 

are the real and imaginary parts of the coefficients). The corresponding reconstructed velocity field 
is shown in Fig. 6. Note that the solution has a characteristic repeating structure, and for most of 
the cycle it remains near a fixed point with only the amplitudes of the 2 and 4 modes nonzero; i.e. 
the dynamics remains near the invariant subspace spanned by these modes. During this time, the 
amplitudes of modes 1, 3 and 5 grow exponentially in an oscillatory fashion, until eventually the 2 
and 4 modes respond rapidly, the phase of the 2 mode changing by 7c and that of the 4 mode by 
27c, while the amplitudes of the 1, 3 and 5 modes simultaneously collapse to zero. The cycle then 
repeats. One can also see how the active unstable modes switch from the real x1,x3,x5 subspace to 
the imaginary yi, y3, y5 subspace and back again. Solutions of this type persist and appear strongly 

attractive over a relatively wide range of parameters, r. 
What is happening here? From a consideration of the behavior in phase space, we seem to have 

heteroclinic cycles - the solution moves from the vicinity of one unstable fixed point to another and 
back again. In fact, analyses analogous to those sketched below for the two-mode model in Section 10 
reveal that the steady 2/4 mode solutions constitute a circle of saddle points with two-dimensional 
heteroclinic orbits connecting diametrically opposite points. Now generically, heteroclinic cycles are 
structurally unstable, and can be removed by small perturbations (Guckenheimer and Holmes, 1983); 
yet they are observed to persist here, for general initial conditions and for ranges of parameters. This 
is possible, in this case, due to the symmetries of the system, which play a crucial role in stabilizing 
the heteroclinic cycles, as we will show in Sections 9 and 10. 

Before proceeding to this, it is useful to consider the physical implications for the observed 
behavior: In the reconstructed velocity field (see Fig. 6) one can see clear evidence for the burst- 
sweep cycle that we set out to explain. That is, in spite of the extreme truncation, this 5-mode model 
qualitatively captures the gross features of the turbulent burst-sweep cycle in the boundary layer, 
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Fig. 6. Cross-stream (~2, ~3) components of the velocity field corresponding to a single heteroclinic excursion, reconstructed 
from the temporal dynamics of the modal coefficients at ec = 1.4, shown in Fig. 5. From Aubry et al. (1988). 

including the lateral shift in the position of vortices. The evidence strongly suggests that this cycle 
corresponds to a heteroclinic cycle in phase space, with the mechanism driving the bursts being the 
excitation of an unstable mode involving spanwise wave numbers 1, 3 and 5. 

Eqs. (33) were simulated over a range of loss parameter values, a (high a implies high-energy 
transfer to neglected modes). The bifurcation diagram is shown in Fig. 7. For decreasing CC, we 
find a globally stable equilibrium (in the 2, 4 subspace) becoming unstable to give various types of 
mixed mode solutions, including two “windows” of heteroclinic cycles, and travelling wave solutions. 
The cycles of Figs. 5 and 6 occur in window II. For smaller a, there is a complex interaction of 
(modulated) travelling waves and heteroclinic cycles, and solutions appear to be chaotic. Even lower 
cc gives simple spanwise travelling and modulated travelling waves. From the bifurcation diagram, 
it is also clear that the modes become unstable from the trivial equilibrium state in the order 2, 1, 
3, 4, 5; this corresponds to the energy distribution in Fourier space, as revealed by the empirical 
eigenvalues (Fig. 4). 
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Fig. 7. Bifurcation diagram showing solutions and their stability types as E is varied. From Holmes (1990). 

When the empirical eigenfunctions are derived from a different data set (for instance from a 
large eddy simulation of channel flow (Moin, 1984) rather than from Herzog’s (1986) pipe flow 
experiments, which were used for the original computations of Aubry et al. (1988)) the numerical 
values in the bifurcation diagram change slightly, but the qualitative structure remains the same. In 
particular, the modes bifurcate off the trivial state in the same order, and a-ranges giving heteroclinic 
cycles still exist. This is encouraging confirmation that the picture of bursts and sweeps due to 
heteroclinic cycles is characteristic of boundary layer flows in general, and is not just a property of 
a particular data set or truncation. 

In this respect, more realistic simulations, including nonzero streamwise modes and even a second 
family of empirical eigenfunctions, have been performed (Aubry and Sanghi, 1991; Sanghi and 
Aubry, 1993). Of course, the results are much more complicated, but they seem to embody the same 
“skeleton” of heteroclinic bursts found in the simpler and cruder models, while the mechanism of 
the bursts, in terms of the excitation of higher and streamwise modes, is captured more realistically. 
We also note the study of Zhou and Sirovich (1992) which overcomes the pressure boundary term 
problem by deriving “full-channel” eigenfunctions, weighted to emphasize wall-region dynamics, and 
which also includes streamwise modes. 

Before briefly assessing these findings, we leave the boundary layer models to describe related 
work on modeling other fluid flows. We then return to our main theme to discuss symmetry in more 
general terms, and to present some examples in which heteroclinic cycles occur in a simpler and 
more transparent fashion. 

8. Modeling of other open flows 

The methods described above may be applied rather generally to model the dynamics of coherent 
structures in spatially extended systems. Indeed, the POD has been applied to mechanical vibrations, 
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laser dynamics, nonlinear optics, chemical processes, and even to studies of neural activity in the 
human brain. In fluid mechanics per se, numerous studies of closed flow systems have been done, 
using both experimental and numerical databases (Sirovich et al., 1989; Park and Sirovich, 1990; 
Sirovich and Park, 1990; Deane and Sirovich, 199 1; Sirovich and Deane, 199 1). Much attention has 
also been paid to model PDEs for weakly nonlinear waves, including the Ginzburg-Landau, Burgers, 

and Kuramoto-Sivashinsky equations (Sirovich and Rodriguez, 1987; Rodriguez and Sirovich, 1990; 
Sirovich, 1989; Chambers et al., 1988; Kirby and Armbruster, 1992; Aubry et al., 1991, 1992). 
In much of this work the POD is applied and its results assessed in a “static”, averaged fashion. 
We cannot provide a proper survey of all such applications, but we do wish to place the modeling 
described thus far in context, by describing some other recent work on open fluid flows in which 
the POD was used as a basis for the derivation of low-dimensional models and some analysis of 

the models attempted. 
We will outline five problems, the first of which is, like the boundary layer, a fully developed 

turbulent flow. Of the other four, two involve transition, spatial growth, and evolution of coherent 
structures, and two exhibit complex geometry. Both experimental and numerically generated databases 
are represented. These examples suggest the broad range of flows for which low-dimensional models 

can be made. 

8.1. A circular jet 

Recall Fig. 1, showing the plane mixing layer. A related example, with important technological 
applications, is the circular jet and its concomitant annular mixing layer. This flow has been studied 
by George, Glauser, and their co-workers (Glauser and George, 1987a,b; Glauser et al., 1987; Glauser 
et al., 1991a,b; Glauser et al., 1992; Grinstein et al., 1995; Zheng and Glauser, 1990). 

The annular jet mixing layer is the region between a jet exiting from a nozzle and the ambient 
fluid. As in the shear layer, mixing is largely achieved by lobe-like pseudopodia: these are the co- 
herent structures to be captured in a low-dimensional model. Circular symmetry of the jet implies 
homogeneity in the azimuthal direction. Radially - across the layer - the flow is clearly inhomo- 

geneous and in the streamwise direction it is also strictly inhomogeneous, although approximate 
streamwise self-similarity (cf. Fig. 1) suggests that, after resealing, one might assume homogeneity. 
As described below, in considering “short” subdomains, Glauser et al. did assume homogeneity, 
appropriate to nearly parallel flows; in other work they appealed to the Taylor hypothesis to develop 
a model for streamwise (spatial) evolution. 

In Glauser and George (1987b) the dominant family of eigenfunctions was found to contain 
over 50% of the average energy, and this family of eigenfunctions alone was used in the model. 
The eigenvalue spectrum as a function of azimuthal (m) and streamwise (kr ) wave number is 
shown in Fig. 8(a). Its structure is richer than the analogous Fig. 4 for the wall layer, with peaks 
in the k, -direction for m =O, corresponding to the jet’s Strouhal (vortex-shedding) frequency, and 
at azimuthal mode number m z 5 for small streamwise wave number kr (Glauser et al., 1991b). 
The ridge connecting these peaks across the interior of the wave number plane indicates that any 
reasonable low-dimensional model should include a triangle of mixed azimuthal/streamwise modes; 
see Fig. 8(b). 

The PDE and the boundary conditions used in the jet mixing layer study are derived in Zheng 
and Glauser ( 1990), Glauser et al. ( 1991 b), and Grinstein et al. ( 1995). The equations are analogous 
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Fig. 8. (a) The spectrum of empirical eigenvalues for the dominant family in the jet study. (b) Streamwise and azimuthal 
wave numbers for inclusion in a dynamical model. From Glauser et al. ( 1991b). 

to the boundary layer case of Sections 6.1-6.2, but in a cylindrical coordinate system appropriate to 
the jet geometry. As there, the mean velocity is related to the Reynolds stress, although there is no 
term corresponding to the second component of Eq. (27). A boundary condition on the pressure at 
the edge of the model domain was also imposed, similar to that in the boundary layer case (3 1 ), but 
since the domain modeled includes most of the mixing layer and fluctuating velocities are almost 
zero at the boundaries, the pressure terms are significantly smaller than in the wall layer model and 
they were neglected. 

Taking a cue from the energy content revealed by the eigenvalue spectrum of Fig. 8(a), 18 
(complex) modes were retained in the Galerkin projection, as indicated in Fig. 8(b), for a total of 
36 real ODES. Solutions were examined for different values of a bifurcation parameter analogous to 
CI in the boundary layer model (33). In some parameter ranges a cascade-like phenomenon involving 
interaction between streamwise and azimuthal modes was seen, with net transfer of energy from 
modes with m =O, kl > 1 to modes with m =4,5,6, k, = 1. Reconstructed velocity fields for this 
parameter range show pairs of approximately azimuthally symmetric (m = 0) vortices pairing and 
subsequently losing stability to m # 0 modes. Vorticity field reconstructions also suggest the creation 
of smaller-scale motions coincident with bursts in the modal coefficients. 

Due to the imposed rotational and streamwise homogeneity, the model shares the O(2)-equivariance 
of the boundary layer models, and one expects to see heteroclinic cycles. Time histories and phase 
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(b) 

Fig. 9. Comparison of the leading eigenfunction (a) with an experimental visualization of a lambda vortex (b). From 
Rempfer and Fasel (1994a). 

portraits of modal coefficients presented in Figs. 9-l 5 of Glauser et al. (1991b) suggest that such 
intermittent, bursting solutions do indeed occur, although detailed studies of the type described in 
Section 10 below remain to be done. In other parameter regions, solutions exhibit modulated trav- 
elling waves similar to those found at low loss values in the boundary layer model: see Aubry 
et al. (1988) and Section 7.3. 

8.2. A transitional boundary layer 

A second important canonical problem is the laminar to turbulent transition in a flat plate boundary 
layer. Rempfer and Fasel have addressed this problem in Rempfer (1993, 1994), and Rempfer 
and Fasel ( 1991, 1993, 1994a,b). Their database derives from direct numerical simulation (Rist 
and Fasel, 1995) of an experiment carried out earlier by Kachanov et al. (1985). The simulation 
enforced reflection symmetry with respect to a central, streamwise-wall normal plane, transverse 
to the spanwise direction, matching the (approximate) symmetry induced experimentally by use of 
symmetric suction and blowing. Rempfer and Fasel computed empirical eigenfunctions on several 
subdomains at different downstream locations within the larger computational domain. 

The flow is inhomogeneous in all three directions, since it is developing in the streamwise direction 
and the natural spanwise translation symmetry is removed by imposition of the reflectional constraint. 
Two results of Rempfer and Fasel(1994a) are especially notable: first, it was shown that the POD can 
extract a structure similar to a lambda vortex, characteristic of transitional flows: see Fig. 9. Second 
(see Fig. 10) the leading empirical eigenfunctions at several streamwise locations were compared with 
the classical Orr-Sommerfeld eigenfunctions for a two-dimensional laminar layer, representing the 
streamwise velocity component of Tollmien-Schlichting waves of linear stability theory. At upstream 
locations, the empirical eigenfunctions are nearly identical to the Orr-Sommerfeld eigenfunctions; 
further downstream they differ significantly, as the weak initial instabilities evolve into more fully 
nonlinear forms. 

In interpreting these results it is important to recognize that the leading eigenfunctions occur 
approximately in pairs, with almost equal eigenvalues. As we saw in Section 4.3, if the layer were 
perfectly translation invariant in the streamwise direction, Fourier modes would result, each of which 
can be expressed as real sine and cosine components associated with each double eigenvalue. The 
empirical functions presented in Fig. 2 of Rempfer and Fasel (1994a) are remarkably similar to these, 
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Fig. 10. Comparison of streamwise velocity profiles of the leading pair of empirical eigenfunctions with Ox-Sommerfeld 

eigenfunctions: (- ) O-S eigenfunction; (- - - -) r.m.s. profile of empirical eigenfunction. Panels (a)-(d) represent 

successive downstream locations. From Rempfer and Fasel (1994a). 

indicating approximate invariance in each subdomain, consistent with slowly developing structures. 
The coherent structures of Figs. 9 and 10 were therefore constructed as sums of corresponding pairs 
of eigenfunctions multiplied by the appropriate modal coefficients. 

In the dynamical analyses of Rempfer (1993, 1994) the Navier-Stokes equations were projected on 
spaces spanned by 30-40 modes with essentially no modeling other than of energy losses to neglected 
modes. At the wall, the eigenfunctions satisfy the no-slip condition, while the exponential decay at 
the free-stream side, employed in the simulations of Rist and Fasel (1995), results in no additional 
boundary terms: unlike the wall-layer model, the domain encompasses essentially the whole thickness 
of the developing layer. Periodic boundary conditions, consistent with the symmetry constraint, were 
imposed in the spanwise direction. Inflow and outflow influences at the boundaries of each subdomain 
were not specifically modeled; essentially one appeals to the fact that the correct combinations of 
empirical eigenfunctions satisfy appropriate velocity boundary conditions on average. Energy losses 
to neglected modes were modeled by an effective (Heisenberg) viscosity which increases with wave 
number. It was not necessary to model the “quasilocal” mean velocity profile as in Section 6.1, so 
that the ODES are quadratic, like the original Navier-Stokes equations. 

The resulting low-dimensional models are capable of excellent short-time tracking of projections 
of the full direct numerical simulation (DNS) solution, as shown in Rempfer (1993), Fig. l(a); 
see also Rempfer and Fasel (1994b), Fig. 2, reproduced here as Fig. 11. They also display the 
increasing complexity of the time-dependent modal coefficients, as one moves to subdomains further 
downstream and the Tollmien-Schlichting waves develop secondary instabilities. However, little 
is known about the geometric structure of the models in phase space, although Rempfer (1994) 
identifies an analogy between the equations for coherent structures and those of nonlinearly coupled 
multi-degree-of-freedom oscillators. 

In Rempfer and Fasel (1994b) energy equations were derived for the coherent structures and en- 
ergy transfer analysed. Rather than integrating model equations for the coefficients as in Rempfer 
(1993), the modal coefficients were obtained by projection of DNS solutions onto the appropriate 
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Fig. 11. Comparison of modal amplitudes of DNS and low-dimensional model data for the boundary layer: (- - - -) direct 
numerical simulation; (-) model. From Rempfer and Fasel (1994b). 

empirical eigenfunctions. Both instantaneous and time-averaged energy flows were studied in projec- 
tions comprising 34 eigenfunctions, and conclusions were drawn regarding both the energy budget 
which maintains the mixture of coherent structures in the fluctuating velocity field, and mechanisms 
involving higher-order structures in the characteristic spike events of transition. 

This work differs in several respects from that on the turbulent boundary layer described above. In 
the latter, the assumption of spanwise and streamwise homogeneity leads to a Fourier decomposition 
in both these directions. Thus the experimentally observed individual coherent structures do not 
appear as single eigenfunctions, or even simple pairwise combinations, per se. Rather, various Fourier 
components, weighted by the solutions of the low-dimensional models, dynamically mix to produce 
the quasisteady rolls, streaks, and bursts displayed in Fig. 6. In contrast, here a combined pair of 
eigenfunctions associated with a near-multiple empirical eigenvalue derived by Rempfer and Fasel 
(1994a) captures much of the lambda vortex structure surprisingly well, as indicated in Fig. 9. 
This derives from the enforced reflection symmetry in the spanwise direction, inherited from the 
DNS database, which restricts consideration to a subspace of reflection-symmetric eigenfunctions. 
This constraint rules out propagating waves in the spanwise direction and may not permit all the 
physically relevant unstable modes to emerge. If such a constraint were imposed on the five-mode 
model of Section 7, for example, it would restrict solutions to the real subspace and would therefore 
preclude the exploration of heteroclinic cycles. (As described in Section 10.1 below, of the two 
steady heteroclinically connected solutions contained in the real subspace, one is a saddle and one 
a sink. Solutions restricted to this subspace would therefore die in the sink.) 

8.3. A forced transitional mixing layer 

Just as one may promote particular disturbances in a transitional boundary layer, other developing 
flows can be “locked” to applied excitations. The next example involves an acoustically excited plane 
mixing layer studied by Rajaee et al. (1994) (cf. Rajaee and Karlson, 1990, 1992). The database 
derives from experimental hot wire measurements of two-dimensional (streamwise and cross layer) 
velocities. 

The layer was excited by a loudspeaker below a spanwise slot in the floor of the test section, with 
which two superposed sine waves were applied, at the unstable natural frequency and its first sub- 
harmonic frequency, separated by a (controllable) phase shift. A 270” phase difference was chosen, 
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having been found to suppress the development of three-dimensional motions. Two-point correlation 
tensors were constructed from single-point measurements by appeal to phase locking. The streamwise 
extent being relatively large, the flow was treated as inhomogeneous in both streamwise and cross- 
stream directions, and a two-dimensional POD analysis was carried out via the method of snapshots 
(Sirovich, 1987). The first four modes were found to capture 86% of the energy on average; the first 
eight contained 96%, and modes nine to 16 contributed only 1.3%. The first two modes correspond 
to the subharmonic and the next two modes to the natural frequency. Projections of experimental 

data onto these pairs of eigenfunctions reveal almost perfect sinusoidal oscillations (Rajaee et al., 
1994, Fig. 6; also see Fig. 12, below). The eigenvalues within each pair are approximately equal; 
as in the work of Rempfer and Fasel, this reveals approximate streamwise homogeneity. 

As in Section 6.1, the velocity field was (Reynolds) decomposed into steady and fluctuating 
components and a PDE written for the latter, with the time-averaged stress term modeled as a sum 
of empirical eigenvalues by appeal to uncorrelatedness of their expansion coefficients (10). The mean 
flow was treated as constant in time and viscosity was neglected as it is dynamically unimportant 
in this (non-turbulent) problem. As in the transition layer study above, the pressure term at the 
boundary of the domain of integration was set to zero. The resulting dynamical systems appear to 
have no particular symmetry structure in phase space. 

Simulations of models containing eight and sixteen (real) modes were compared to experimental 
data, via projections of the latter onto individual eigenfunctions. Fig. 12 shows a sample of the 
results for the first eight modes of the 16 mode system. For both models, the first two modes 
display remarkably good tracking of the experimental time evolution, while higher modes are less 
faithful, although their general level remains correct for the 16 mode problem. In the eight mode 
system, the fifth and sixth modes exhibit growing magnitudes significantly above the experimental 
data. Evidently, an energy transfer mechanism, which would normally feed the ninth and higher 
modes, is absent in the eight mode truncation. (Such transfer could be modeled by an effective 
viscosity as in the boundary layer studies.) 

The dynamical behavior of these models is considerably less complex than that of the transitional 
boundary layer models of Section 8.2. Like the experimental system, they primarily exhibit advected 
vortices, although there is strong evidence of vortex pairing in some snapshots (Rajaee et al., 1994, 
Fig. 3). The two-dimensional nature of the model may explain why solutions, without the addition 
of feedback or effective viscosity, do not blow up (cf. Sections 6.2 and 6.3): there is no three- 
dimensional vortex stretching to transfer energy into fluctuations from the mean flow. However, 
only relatively short integration times were presented, and long-term behavior was not considered. 

8.4. Two jaws in complex geometries 

We have thus far viewed the POD and associated low-dimensional models as tools for the study 
of “canonical” flows, with a view to gaining general understanding of turbulence generation and 
instabilities. Can the optimality of empirical bases also help in modeling flows in complex geome- 
tries? Such flows are of great technological importance, for example, in rotating machinery. Deane 
and his co-workers (1991) appear to have been the first to investigate this possibility. They con- 
sidered two geometries: flow in a grooved channel and in the wake of a circular cylinder. Both 
databases were generated by spectral element simulations, and were two-dimensional. The channel 
has a rectangular cavity in its bottom wall; the boundary conditions are no-slip at the walls and 
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Fig. 12. Comparison of modal amplitudes of experimental and low-dimensional model data for the forced mixing layer: 
(- - - -) experiment; (-- ) 16 mode model. From Rajaee et al. (1994). 

periodic in the streamwise direction, so that the domain represents one cell in a longitudinal array. 
The cylinder wake is dominated for a wide Reynolds number range by the K&man street: pairs of 
vortices shed alternately from the upper and lower surfaces, and periodic boundary conditions are 
used only in the cross-stream direction. In the streamwise direction, a prescribed inflow profile and a 
viscous “sponge” at the outflow boundary are applied, since simple periodic conditions would allow 
shed vortices to re-enter the domain, 

The Reynolds number for the channel flow was Re=350 based on 0.75 of the mean flow rate 
(Deane et al., 1991). (Onset of periodic oscillations was observed at Re= 300.) In the cylinder 
wake, three flows were considered at Reynolds numbers of 100, 150, and 200 based on cylinder 
diameter. In all cases the systems exhibited limit cycles, so the temporal dynamics were, as in the 
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previous example, rather simple. Here the concern is primarily with spatial complexity. Superficially, 
the spatial form of trapped or shed vortices in problems of this type might seem highly Reynolds- 
number dependent, and an important question concerns the range of validity of models based on 

data collected at a particular Reynolds number. 
Two-dimensional POD analyses were carried out, using the method of snapshots (Sirovich, 1987). 

Data ensembles were of modest size and restarts from different initial conditions were made, to pro- 
vide an ensemble average without relying on ergodicity. In flows of this type, with simple temporal 
dynamics, this is clearly an important consideration. In the grooved channel flow the first two modes 
captured over 99% of the energy. For the cylinder wake at all three Reynolds numbers, the two 
leading modes captured over 97% and the first four to five modes (depending on Reynolds number) 
exceeded 99%. In spite of the apparent strong inhomogeneity in the streamwise direction, the leading 
eigenfunctions for both flows again exhibited distinct pairwise patterns and the eigenvalues occurred 
in approximate pairs, as in the transition and mixing layers just described. 

Working in a mixed velocity/vorticity formulation, a straightforward projection of the fluctuating 
component of the Navier-Stokes equation was performed, with a constant mean profile. Due to the 
geometry and boundary conditions in both problems, and the fact that the full computational domain 
was included, the pressure terms vanish. In studying the performance of models for the cylinder wake 
over a range of Reynolds numbers, it was found that the constant-shape mean flow was the greatest 
single factor causing poor performance: using the corrected mean profile, even with eigenfunctions 
for a different Reynolds number, led to acceptable results. Similar observations applied to the grooved 
channel model. An empirical relation allowing for variation of mean velocity profile with Reynolds 
number was therefore introduced. 

The authors studied dynamical systems with four modes for the grooved channel flow and observed 
that increasing the number of modes to eight or 16 gave comparable results. All models were based 
on the eigenfunctions derived from the Re=350 simulations. For the cylinder wake, at least six 

modes were necessary to obtain stable oscillations; with only four modes, oscillations appeared to 
grow without bound. Models were derived for Reynolds numbers of 100, 150, and 200, with the 
mean velocity profiles from the appropriate Reynolds number. Models using eigenfunctions from a 
Reynolds number of 100, with mean velocity profiles derived from higher Reynolds numbers, were 
also constructed. 

Projections of attractors into various phase planes and bifurcation diagrams of the model ODES 
were compared with those from the full simulation. A given dynamical system was found to display 
very good short-term tracking for the Reynolds number from which it was derived; attractor phase 
portraits and bifurcation diagrams also matched well. The potential for extrapolation in Reynolds 
number range was particularly emphasized in this work. In particular, Fig. 15 of Deane et al. ( 1991) 
is a bifurcation diagram showing the dependence of the limit cycle amplitude on Reynolds number 
for the cylinder wake. 

This study addressed an important aspect of low-dimensional models: their capability for use at 
Reynolds numbers different from those for which the eigenfunctions were constructed. An early 
study of a model problem, the complex Ginzburg-Landau equation (Sirovich and Rodriguez, 1987; 
Rodriguez and Sirovich, 1990), addressed the same issue. (Note that this is not a concern for the 
turbulent wall-layer models of Sections 6 and 7, since those models are expressed in wall variables 
and so should be universal: see Section 6.3.) These results suggest that empirical eigenfunctions can 
significantly reduce the amount of data needed to describe and model spatially complex flows, and 
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that they enable one to identify at least the “pre-turbulent” bifurcations which occur in such flows. 
Similar ideas have been used by Noack and Eckelmann (1992, 1994a-c) to construct and analyze 
low-dimensional models of the cylinder wake problem. 

8.5. Discussion 

A number of common features emerge from the boundary layer modeling described in Sections 6 
and 7 and the work summarized in the present section. In particular, low-dimensional models can 
reproduce the behavior of temporally simple systems, such as the forced mixing layer and low 
Reynolds number complex geometry flows, remarkably well. They can even display good quanti- 
tative short-time tracking capabilities, suggesting that they may be useful as models with sufficient 
predictive capacity for feedback control purposes, or for use in Kalman filters. 

For flows of greater (spatio-) temporal complexity, such as the turbulent boundary layer and jets, 
one should perhaps be more modest, seeking at first only qualitative understanding. However, as 
the discussions to follow in Sections 12 and 13 indicate, we believe that these models can provide 
important information on key mechanisms such as the burst-sweep cycle. The work on the transitional 
boundary layer of Section 8.2, an intermediate case in complexity between the “simple” flows of 
Sections 8.3 and 8.4 and fully developed turbulence, supports this view. Low-dimensional models 
enormously simplify and significantly restrict the full behavior, but such a simplification and the 
identification of key features which it permits, is just what we set out to achieve. 

In all cases, it seems important to include sufficiently many low-energy modes to afford reasonable 
energy transfer and dissipation mechanisms, or to model these as suggested in Section 6.3. Modes 
which are inactive on average may well undergo brief bursts of high-energy action in which they 
play a crucial dynamical role. Indeed, this is essentially what the odd Fourier modes do during 
heteroclinic cycling in the five mode model of Aubry et al. (1988): see Fig. 5. 

Further general comments on the validity of low-dimensional models appear in Section 13. 

9. Symmetry: translations, reflections, and O(2)quivariance 

Symmetry is a central and powerful concept in dynamics. On the one hand, it allows one to 
reduce the complexity, and often the dimension, of a system. On the other, symmetries have pro- 
found implications for the robustness of structures in a system under perturbation. A given solution, 
such as homoclinic connection, may be destroyed by the smallest general perturbation: think of the 
effect of weak damping on the energy-conserving saddle separatrix loop in the classical pendulum 
equation. However, if only perturbations consistent with the symmetries of the system are allowed 
(reversibility, for the pendulum), the same solution might be structurally stable and hence survive 
such perturbations. 

We have already noted how the group O(2) appears in the boundary layer model, where it stems 
from translation and reflection invariance of the original physical situation (see Eqs. (34) and (35)). 
To appreciate better the action of O(2) on a set of Fourier modes, consider a scalar variable w(x, t) 
expanded in a Fourier series: 

W(X, t) = C Zj(t)e2”‘jXiL . 

.i 

(36) 
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Translation and reflection in physical space, the x dimension, become 

T,~(~) = w(x + a) = CzjeW(-~+a)/L = C (e2nijalLZj)e2~?l.rlL , 

i i 
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(37) 

Rfwcx) = w(-x) = C zje2rrii(-x)iL = C z_~ie2WlL . 

i i 

(38) 

Remembering that in a physical system w(x, t) is generally real, forcing z; = z-j, we conclude that 
translation and reflection in physical space induces the following actions on the coefficients of the 
Fourier modes: 

T, : Zj t--+ e (Zmja/L) 
?I ) 

T, is a rotation in the complex plane and Rf is a reflection across the real axis. For z1 this is 
precisely the standard action of O(2) on @, the space where the coefficients live. Every member of 
O(2) can be constructed out of a finite combination of these transformations. The T,‘s together with 
Rr generate O(2). For a general j, the only difference is that elements are rotated by an angle ja, 
but this amounts to a simple resealing. Thus, O(2) represents the induced action on the phase-space 
@” by the transformations (34) and (35) for any n. 

In summary, if we start with a translationally invariant system and project it onto a Fourier 
basis, the resulting system of ODES for the evolution of the coefficients will exhibit O(2) symmetry. 
In the next section, we will take a closer look at the consequences forced by O(2) symmetry on a 
system, after first discussing symmetry in a broader framework. 

10. Equivariant ODES and heteroclinic cycles 

Given a group of transformations r on a space X (e.g. X = BP), we say that a function g : X + Y 
(where Y is some, possibly different, space, e.g. Y=X or Y= DB) is r-invariant if 

g(x) = g(y(x)) for all y E r . (40) 

We call a function f : X-X r-equivariant if 

IUP)) =fW)) for all Y E r. (41) 

Similarly, we call a family of ODES 

i = f(x) with x E IP (42) 

r-equivariant if the vector field f is equivariant, i.e. 

Y(i) = lwx)) =f(Y(x)) for all Y 6 r. (43) 
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The key implication of (43) is that, if i(t) is a particular solution of (42), then so is ya(t) for any 
y E r: each solution belongs to a whole group orbit of solutions. 

In general, equivariant (scalar- or vector-valued) functions are built out of “pure” equivariant 
elements multiplied by invariant scalar-valued functions. As an example, consider the group D,, the 
group of rotation and reflection symmetries of an n-gon in the plane. Identifying the plane, VP, with 
the complex plane, @, for notational convenience, the D,-equivariant functions (under the standard 
action on C) are of the form 

g(z) = P(% o)z + 4(% tQ(z*)“-’ , 

with u =zz* and v =zn + (z*)“. A quick calculation shows 
u and ~1 are invariant. Thus, the scalar functions p(u, u) 
g(z), is equivariant. 

IO. I. O(2) and normal forms 

that (z*)“-’ and z are equivariant and that 
and q(u, v) are invariant and the totality, 

As already noted, we are primarily interested in the implications of O(2) symmetry. In anticipation 
of the types of equations we will extract later, we consider a set of O(2)-equivariant ODES of the 
form 

i1 = f1(z,,z2) > i2 = f2(zl,z2) with z1,z2 E @, (44) 

i.e. the most general form of an O(2)-equivariant ODE on C 2. In this case the invariant functions 
turn out to depend only on the three combinations Izr 12, Iz2 I2 and zfz,* + zr2z2, and the equivariant 
vector fields are 

(:i) and (si”) . 

Hence, up to third order, we have the normal form 

i, = ~,zl +c,2z;z2 + (d&l2 + d,21z212)z, , 

i2 = ~2~2 + cl,z: + (d2,/zlj2 + d22/z2)2)z2, 
(45) 

in which all the coefficients are purely real. Assuming that c r2, cl, # 0 we can further rescale, re- 
versing the direction of time if necessary, to obtain 

21 = z;z2 + (PI + ell Izl I2 + e121z212)zi , 

i2 = *zf + (p2 + e2l Izl I2 + e221z2j2)z2 , 
(46) 

where ell =d,,/lc,,~,~l, e12 =d12/cf2, e2, =d2,/Ic,lc,21 and e22 =d22/cf2. Through these resealings, we 
significantly reduce the complexity, but there still remain several cases depending on the signs of 
the various coefficients. Here we will analyze only the case relevant to the boundary layer model in 
the heteroclinic cycle range presented earlier. In this case, the quadratic term in the second equation 
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of (46) is -zi, and the parameters satisfy eij < 0 < pjj, and ,u~ - ,uc12(e12/e22) - ,/s < 0 < ,u~ 
- p2(e12/e22) + vs. Then we have the following proposition: 

Proposition 1. For eij -C 0 < Pj and PI - Mede22) - v’x < 0 < PI - ,dede22) + v’?&%, 
the system (46) ( “-” case) has a circle of equilibria connected by heteroclinic cycles. Furthermore, 
if pl - p2e32/e22 -C 0 the cycles are attracting. 

Proof. First, observe that the zz-plane, defined by zl = 0, is invariant. Seeking equilibria in this plane 
and remembering that ei, < 0 < pji, we find a circle (group orbit) of fixed points defined by 1z21 = 
dz. NOW let Z, =xj + iyj and consider (46) as a system on IR4 with (z1,z2) = (x,, yl,x2,y2). 
We obtain 

XI =x1x2 +y1y2 +x~(pl +ellr: +e12r;), 

YI =x1y2 - y1x2 + y~(p~ + ellrf +e12ri), 

X2 = -<xf - yf)+x2@2 +e21rf +e22r,"), 

_92 = -~IYI + y2b2 +e214 +e22r,'>, 

where $ = xJ’ + J$. Linearizing about (0, 0, vx, 0), we get the diagonal matfix A+0 0 0 OII- 0 0 ! 1 0 0 -2p2 0 ’ 

00 00 

where 

(47) 

(48) 

L = i4 - b2e12/e22) f JYZi. (49) 

Because these equations are equivariant under rotation about the origin, this structure will be pre- 
served around the circle of equilibria. In the light of our assumptions on the parameters, we have 
a two-dimensional stable and a one-dimensional unstable manifold emanating from each point of 
the circle. Furthermore, by looking at Eqs. (47), one sees that the real subspace, span{( l,O,O,O), 
(0, 0, 1, 0)}, is invariant. For the moment, we focus on the two points where the circle of fixed points 
intersects this invariant plane, namely A = (0, 0, v’s, 0) and B = (0, 0, - ds, 0). Looking 
at the equations as expressed in (47) and setting yi = y2 = 0, we see that A is a saddle and B a 
sink. Orbits leaving A are trapped in a bounded disc, and since there are no equilibria or limit sets 
in the half spaces {xi > 0) and {x1 < 0}, they must limit on B. Thus, we have a heteroclinic orbit 
from A to B. By judicious application of the O(2) symmetry given by transformation (39), we can 
complete the picture. The application of Tx12 amounts to a rotation by 7t/2 in the z1 plane and by n: 
in the z2 plane. In coordinates, this gives 

Trr/z : (x,,Y~,x~,Y~) ++ (Yl,-xl,-x2>-Y2) * 

Application of TX/~ permutes the connections from A to B, giving a connection from B to A living in 
the plane defined by (~2 =x1 = 0). Thus, we establish the presence of a heteroclinic cycle containing 
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Fig. 13. A and B are connected by a pair of symmetric heteroclinic cycles. 

A and B (see Fig. 13). Application of T, for arbitrary c1 shows that every diametrically opposed pair 
of equilibria on the circle 1~~1 = ,/‘T 2 e22 is connected in such a heteroclinic cycle. 

Determining the asymptotic stability of this connection is a subtle process, and we refer the reader 
to Armbruster et al. (1988) for the details. It turns out that the stability is determined solely by 
the ratio of L/L,: If --1-/L+ > 1, the heteroclinic cycle is attracting while if -i-/L+ < 1 it is 
unstable. 0 

It should be emphasized that the heteroclinic cycles exist for an open set of parameter values. 
Any perturbations which respect the O(2) symmetry will leave the equations, up to third order, in 
the functional form dictated by (46). Thus, a small perturbation, measured in a suitable function 
space, will only give rise to a small change in the coefficients and therefore leave the heteroclinic 
cycle intact. 

As noted in Section 7.3, a similar heteroclinic cycle occurs in the 5-mode model of Aubry 
et al. (1988), and is responsible for the solutions shown in Fig. 5. Here the circle of equilibria lies 
in the (u2,a4) even mode subspace, intersecting the real subspace at the points (x~,x~,x~,x~,x~) = 
(0, 7p2, 0, -p4, 0), and the unstable manifolds of each point are two-dimensional. Within the real 
subspace, A is a saddle and B a sink; the unstable manifold of A lies in the (xi ,x3,x5) subspace 
and a connection from A to B can easily be observed numerically, although a rigorous construction 
involving positively invariant regions is still lacking. Accepting this “first” connection, however, the 
cycle follows just as with the simpler four-dimensional case above. 

With the above structures in hand, the model’s “bursting” and “sweeping” behavior is understand- 
able in terms of motions in the phase plane. As described in Section 7.3, bursting and sweeping 
correspond to the rapid transitions from the neighborhood of one fixed point to that of another along 
a trajectory shadowing a heteroclinic connection, the momentary activity of the 1, 3, 5 modes causing 
break-up and coalescence of the streamwise vortices. In the light of the symmetries of the problem 
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and the above discussion, such connections are quite natural and generic. The even modes experi- 
ence a net phase shift after each circuit, reminiscent of the observed spatial displacement between 
successive burst/sweep events. However, there is no particular time scale associated with attracting 
cycles: solutions spend successively longer periods lingering near the saddle points as they approach 
the cycle. We address this when we consider the restoration of the pressure term, in Section 12. 

11. The Kuramoto-Sivashinsky equation 

We now briefly turn to an example which shares the O(2) symmetry of the boundary layer model 
and exhibits heteroclinic cycles, but which is considerably simpler and easier to understand than the 
latter, namely the one-dimensional Kuramoto-Sivashinsky (KS) equation, 

N(u) = Ur + U, + U, + $Yx>2 = 0 ) (50) 

with L-periodic boundary conditions. Originally, this equation was proposed in a model for insta- 
bilities in flame fronts (Sivashinsky, 1977) and for “phase turbulence” in chemical reactions. The 
KS equation and related equations have been used to model various interfacial instabilities, and a 
multi-dimensional version has been proposed to model weak fluid turbulence (Hyman et al., 1986). 
We make no claim that the one-dimensional KS equation has any direct relevance to turbulence; 
however, there are some parallels with the NS equations. The U, term is comparable to u . VU, as 
both introduce energy into the system and consequently destabilize it. Similarly, the u,, term, like 
the dissipative -vV2u NS term, removes energy from the system and provides a stabilizing effect. 
In contrast to the NS equations, however, in the KS system, we can complete our analytical program 
in the vicinity of low-order bifurcation points, justifying almost all of our steps rigorously. 

I I. I. Galerkin projection 

The KS equation is invariant under translations and reflections in x. As observed in the previous 
section, this implies that the POD eigenbasis will simply be a Fourier basis, and that the system of 
ODES resulting from projecting onto the basis will be O(2)-equivariant. Setting 

24(X, 1) = C aj(t)$Jj(X) = C aj(t)eij2m’L , 

we perform a Galerkin projection to obtain 

The first three terms reduce by the orthogonality property of the Fourier basis: 

dx=O. 

(51) 

(52) 

(53) 
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After some rearrangement, the last term is simplified by the same reasoning: 

Thus, we arrive at 

(54) 

(55) 

By dividing through by (2n/L)* and resealing time by the same factor we can obtain the following 
slightly less cluttered equations for the ai’s: 

a, = I2 (l-(F):) al + ZC j(l - Aajaki . l J (56) 

This relation applies to the truncation at any order. If we keep terms to up order K, then Eq. (56) 
defines an ODE on a (2K + 1 )-dimensional complex space. This can be reduced to a 2K-dimensional 
complex space by noting that the evolution of the zeroth mode, a o, is determined by the other modes: 

ho = - i.2 j2aja_j= - 

J=-K 

(57) 

In (57) we have used the fact that u is real, which implies aj = aTj. The reality of u in fact means 
that we need consider only half of the remaining coefficients in our dynamical system (56), those 
with positive 1. Hence, (56) effectively becomes a K-dimensional system of complex ODES (or a 
2K-dimensional system if viewed as real ODES). 

Note that Eq. (56) is equivariant under the group O(2) with the representation (39), regardless of 
how many modes are included. Furthermore, the structure of (56) is identical to that of the linear 
and quadratic terms in the particular K1 =O, N=l case of the boundary layer model in (33). 

11.2. Bifurcation and center manifold reduction 

Treating L as a bifurcation parameter, a linear stability analysis of the origin u = 0 (i.e. al = 0 for 
all 1 E Z) reveals that there is a series of bifurcations from the origin. Specifically, the linearization 

(58) 

implies that a pair of eigenvalues passes through zero when L = 2m for each n E N. Therefore at 
L = 2m, we have a two (real)-dimensional center manifold, a 2(n - 1) (real)-dimensional unstable 
manifold and an infinite dimensional stable manifold consisting of all of the higher-order modes. 
The double eigenvalue is characteristic of O(2)-equivariance. If we are interested in the behavior 
of our model around one of these bifurcations points, it is reasonable to use a model including 
the center and unstable dimensions and to appeal to a center-unstable manifold reduction to include 
information about the stable directions. Armbruster et al. (1989), from whom this discussion is 
adapted, performed such a reduction. 
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For example, for L x 47~ we have a real two-dimensional unstable space and a two-dimensional 

center space spanned by al and ~22, respectively. Of course, Eq. (56) implies that these variables 
are coupled to all of the remaining ai’s. Rather than simply truncate the system we choose to use a 
center manifold reduction (Guckenheimer and Holmes, 1983) to obtain analytic approximations for 
“stable” coordinates in terms of the center and unstable directions, locally near L = 4~. As usual, 
these are expressed as power series in the center manifold coordinates. Substituting back into the 
equations and truncating at cubic order we obtain 

hl = (; + p)a, - 2a;a2 - a, l&l2 , 

Li2 = 16pa2 + ia: - a2($-412 + 51a212). 

(59) 

Notice that this is a specific example of the O(2) normal form encountered previously. As ex- 
plained at the onset, this was expected because of the translation invariance in physical space. How- 
ever, it should be noted that we would not have obtained the cubic terms had we simply truncated 
the Fourier series expansion. They play a role (and have a form) similar to that of the “feedback” 
term introduced in modeling the mean flow u(~,,t) in the boundary layer model, but here their 
origin is mathematically clear: they derive from the center manifold reduction and no “physical” 
order of magnitude arguments are required. 

Analysis of the dynamics and bifurcations of reduced models such as (59), and of models including 
higher-order effects, may be found in Armbruster et al. (1989). 

12. Perturbed heteroclinic cycles, timing and experimental observations 

Thus far, our analysis of the boundary layer model has explained how it correctly mimics the 
experimentally observed bursting and sweeping events and seems to capture the fact that sequential 
burst/sweep events tend to be spatially displaced relative to one another. However, attracting het- 
eroclinic cycles do not possess a distinct time scale; as noted at the end of Section 10, they “die 
out”. In reality, bursting events are observed to be sprinkled randomly in time about a mean rate, 
with distributions having fairly pronounced exponential tails (Holmes and Stone, 1992). 

Up to this point in our analysis, we have ignored the effect of the pressure term, t(t), arising 
from the free boundary conditions at the top of the boundary layer. As mentioned in Section 6.5, 
direct numerical simulations suggest that this term is typically two orders of magnitude smaller than 
the ai’s. For the majority of the phase space, this amounts to a negligible perturbation. However, 
in the neighborhood of a saddle point, the ai’s are considerably smaller in magnitude than in the 
rest of the flow and the effect of t(t) is no longer negligible. We will now show that restoration 
of the pressure term r(t) in (33), modeled by Gaussian white noise, can reproduce a well-defined 
characteristic time scale and exponential distributions of bursting events through its influence on the 
dynamics in the neighborhood of the heteroclinic cycle. 

Though simulations show l(t) to be correlated on short time scales and across (spanwise) Fourier 
wave numbers, as a first approximation we will take t(t) to be standard i.i.d. white noise which is 
uncorrelated in time. (We note that the effect of the pressure term appears insensitive to the particular 
white noise form of the forcing discussed here; Stone and Holmes (1989), using a time series for c(t) 
obtained from numerical data of Moin, found qualitatively similar results.) We will briefly discuss 
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the behavior of trajectories in the vicinity of a saddle point when white noise is included. Before we 
do, however, it is instructive to note that this is the first point at which we have turned to random 
perturbations to explain the system’s behavior. In particular, the pulsing burst/sweep behavior seems 
intrinsic to the flow in the boundary layer and is not driven by perturbations from other regions of 
the flow, only perhaps triggered by them. 

12.1. The noisy connection 

As a model for the effect of noise on a heteroclinic cycle, we consider a single saddle point 
connected to itself in a homoclinic loop; for extension to heteroclinic cycles we merely combine the 
effects of several such saddles. In a sufficiently small neighborhood Ud of such a saddle point, the 
flow is well approximated by its linearization about the fixed point. Consequently in Us, we model 
the flow by 

dxl = &x,dt + Ed&(t) , d+ = &,x,dt + E dWZ(t) , (60) 

where dw is the formal derivative of a standard Brownian motion F(t). This is an example of 
the well-studied Ornstein-Uhlenbeck (OU) process; see Arnold (1974). Outside UJ, we neglect the 
random perturbations, supposing that during the bounded time interval needed to traverse the rest of 
the heteroclinic connection the relatively large deterministic part of the flow dominates. To simplify 
the analysis further, we also ignore the finite distortion which a distribution of solutions would 
experience between the time it leaves US along the unstable eigenspace and when it re-enters along 
the stable eigenspace. Detailed analysis of this system can be found in Stone and Holmes (1990); 
we only sketch the main results in the context of the boundary layer model. 

Solving the Kolmogorov-Fokker-Planck equation for the one-dimensional OU process, one finds 
the equilibrium probability density, conditioned on being at x0 at t = 0, to be that of a mean zero 
Gaussian distribution, namely 

p(x, t lx(O) = x0) = .N(xoei,‘,(&2/21)(e2’.’ - 1)) . (61) 

Our model is built of two uncoupled OU processes: one stable and one unstable, corresponding 
to J., < 0 and ,$ > 0, respectively. We are interested in the competition between the two effects. 
We begin by assuming -1, > 1, > 0 to match the situation in the boundary layer model (attracting 

cycles). Analysis shows that even with the noise, (x/) + 0 as t -+ 00: the stable direction still 

wins. But how are the passage times through US affected by the noise terms? Since we neglect any 
distortion outside U,, we need only study how a Gaussian distribution with mean zero will evolve 
in the unstable direction when injected to U, along the stable direction. From (61), we see that 

the stable OU process possesses JV(O, -&*/2&) as a limiting distribution. Thus, we assume that the 

solution “particle packet” has this distribution when entering along the stable direction. It will then 
be ejected in the unstable direction and evolve according to 

p(x,t!A”(O,-&)) =(.(O,-&e’“u’+$(d”‘- 1)) . (62) 

This can be seen by thinking of the initial Gaussian profile as having evolved from a delta density 
existing at time t’ < 0 such that it achieves the distribution X(0, -&*/2&) at t = 0. Thus, the result 
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of the Gaussian distribution evolved for a time t is the same as that of a delta distribution evolved 
for a time z = t + It’]. More explicitly, 

P (i,l~N (0,-g)) = P(X, t / XV) = x(t - t) = 0) = p(x, 5 / x(0) = 0) 

) 
= J/” ( 0, ?_(,2i., -1) , 

” ) T=t+&ln 1-p , 
‘” ( 1 4 

The probability that the solution leaves the interval [-6,6] in the unstable direction at or before 
time s is 

6 Lcape(S) = 1 - .I’ PG2,S I x2 = 0) dT? ; 
- 6 

(63) 

from this, the mean passage time can be estimated. In the limit where E ~6, it can be shown that 

ExpecWT,,,d = K, + + {In (l/e) + K*) , 

where Ttotal is the overall circuit time around the cycle; see Holmes et al. (1996). Here KI and & are 
constants which depend on the global structure of the heteroclinic connection and the size of Ua, but 
are independent of the magnitude of the noise, E. K1 is basically the time required for global passage 
on the cycle outside tra (the burst/sweep) while K2 is related to the local dynamics linearized at 
the saddle point (inside U,). For E = 0 the expected escape time is unbounded, corresponding to the 
attracting cycle which “dies out”. Introduction of the noise term reduces the expected escape time 

as ln( I/&) at leading order, thereby providing a characteristic interburst time scale in our model. 
Furthermore, this analysis predicts a distribution of escape times with exponential tails. Stone and 
Holmes ( 1989, 1990) have confirmed these asymptotics in numerical simulations. 

12.2. Noise and the boundary layer 

In the boundary layer, the time interval for which a trajectory is trapped in the neighborhood of the 
fixed point corresponds to the time elapsing between sweep/burst events in the local domain of the 
model. In fact, there is considerable evidence for exponential tails from experimental data. However, 
once the timescales of Aubry et al. (1988) are corrected as noted in Section 7.1, the “raw” bursting 
rates obtained from (64) with suitable estimates for E (the r.m.s. pressure field) are still substantially 
lower than those observed experimentally. Noting additionally that direct numerical simulations on 
the minimal flow unit of Jimenez and Moin ( 1991), similarly sized in L1 x L3, also yields much 
slower cyclic behavior than that observed, we now believe that this is due to the spatially localized 
model’s retention of only a single structure in the streamwise direction. 

In reality, a succession of quasi-independent structures each of typical streamwise extent L, is 
swept past a stationary sensor, at a velocity U characteristic of the wall-normal location of the sensor. 
Thus, structures are sampled at a mean rate U/L, with the expected interburst duration being obtained 
by averaging over the probability of n structures passing in succession, none of which are bursting. 
Identifying ?“,, = K1 in (64) with the duration of a burst/sweep event and 7’i = ( l/~U){ln( f ) + K2} 
with the expected interburst duration for a single structure, the probability of passage of n “quiet” 
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structures is (1 - p)“, where p = T,/(T,, + K) is the probability that a structure is bursting. This 
leads to an estimate of observed bursting rate at a fixed sensor of 

Expected(Tburst) = 5 i = 5 1 + 
u’p u [ &+(f)+~~}] ’ 

(65) 

in terms of the quantities in (64). Insertion of physically reasonable estimates for L, and U in 
(65) yields bursting rates within the range of experimental observation. See Podvin et al. (1997) or 
Holmes et al. (1996) for details and further discussion of this timing issue. 

It must also be said that experimental and numerical data shows that the pressure is far from 
a delta correlated white noise process (see Stone and Holmes (1989) for remarks and analysis of 
numerical simulations). Nonetheless, the analysis suggests how quasi-random fluctuations might give 
rise to a distribution of passage times consistent with what is observed. 

13. Conclusion 

In the space of this article, we have only been able to sketch some of the mathematical and 
physical elements which form the basis of a model for the dynamics of coherent structures, in 
particular in boundary layer turbulence. A more comprehensive and critical discussion is found in 
the book by Holmes et al. (1996). We emphasize that the modeling process described here can 
yield at best a crude model, or cartoon, of the intricate processes occurring in turbulence generation 
in general, and the boundary layer in particular. Much physics must inevitably be averaged out, 
modeled, lost in the low-dimensional truncation or simply ignored. In order to obtain reasonably 
tractable, low-dimensional models, we pay the price of only capturing the behavior of the most 
energetic coherent structures; moreover, we model only a localized spatial domain of spanwise and 
streamwise extent comparable to that of an individual burst/sweep event, and thus artificially “extract” 
a single representative from a stream of evolving and interacting coherent structures. 

Nevertheless, in spite of these simplifications and approximations, the models described here do 

seem to create a basis for understanding the dynamics of such structures. Through the technique 
of proper orthogonal decomposition, we are able to identify the most energetic modes, onto which 
we project the governing equations by the Galerkin method, together with modeling of neglected 
modes and boundary conditions, to obtain a reasonably tractable low-dimensional dynamical system. 
Numerical simulation, combined with analysis of the symmetries of the system and of simpler, 
related equations, enables us to gain some understanding of the system behavior. 

In particular, the presence of stable heteroclinic cycles may be established, which appears to 
account for the observed burst/sweep behavior in the boundary layer. The inclusion of random 
noise, to model the influence of the pressure at the outer boundary of the wall region, yields a 
prediction of an exponential distribution of interburst intervals. This agrees qualitatively with what 
is detected experimentally. Numerical investigations of systems including substantially more modes, 
in less violent truncations, give results generally consistent with these observations. 

The identification of burst-sweep dynamics with a heteroclinic attractor in a spatially localised 
model almost certainly simplifies the complex events occurring in the boundary layer, but we believe 
that the cycle identified in the low-dimensional models does provide a skeleton to which muscles 
and flesh will ultimately be added by models which include more modes. The work of Aubry and 
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Sanghi (199 1 ), Sanghi and Aubry ( 1993) and of Zhou and Sirovich (1992) are steps in this direction. 
A more realistic picture yet, might include a “sea” of such models, loosely coupled in space, leading 
to a quasirandom space-time array of bursts and sweeps, as is actually observed. Such a model would 
also presumably provide better quantitative agreement with experimental observations of phenomena 
such as burst-sweep durations (see Section 12.2). 

This notion of a weakly coupled sea may be practically useful. It implies that one may be able 
to make local modifications to an open flow, based only on local information, to achieve local 
turbulence control, without having the full flow field (system state) in hand. Such an effort for the 
boundary layer has begun. Coller et al. (1994a-c; Coller and Holmes, 1997) address mathematical 
and control-theoretic issues relevant to stabilizing heteroclinic cycles in the presence of noise. In 
these papers, motivated by the idea that controlled streamwise vorticity can be added in the wall 
region by suction and blowing, or by micro-mechanical actuators - see Bandyopadhyay ( 1994) - 
models of the type discussed in Sections 6, 7 and 10 are considered. Controlled vorticity, expressed 
as a cross-stream velocity profile (Coller et al., 1994b), adds rotational terms to the ODES which 
permit one to steer incoming solutions closer to the unstable saddle points in the cycle and hence 
to delay bursting; cf. Ott et al. (1990). 

In sum, the present approach to low-dimensional modeling of turbulence forms the foundation 
for a new approach to the understanding of the dynamics of coherent structures in certain turbulent 
flows. 
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