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We formulate a bounding principle for the heat transport in Rayleigh–Bénard con-
vection with fixed heat flux through the boundaries. The heat transport, as measured
by a conventional Nusselt number, is inversely proportional to the temperature drop
across the layer and is bounded above according to Nu 6 cR̂1/3, where c < 0.42 is
an absolute constant and R̂ = αgβh4/(νκ) is the ‘effective’ Rayleigh number, the non-
dimensional forcing scale set by the imposed heat flux κβ. The relation among the
parameter R̂, the Nusselt number, and the conventional Rayleigh number defined in
terms of the temperature drop across the layer, is NuRa = R̂, yielding the bound
Nu 6 c3/2Ra1/2.

1. Introduction
A quantity of fundamental interest in Rayleigh–Bénard convection is the total heat

transport through the layer. This is often expressed in terms of the Nusselt number,
Nu, measuring the enhancement of heat flux beyond pure conduction. The total flux
depends on the temperature drop across the layer, the layer geometry and various
material parameters which together determine a control parameter usually taken as
the Rayleigh number, Ra. A major goal of both theory and experiment is to elucidate
the relation between Nu and Ra.

In high Rayleigh number flows this relation may take the scaling form Nu ∼ Rap,
and much effort has gone into determining the value of the exponent p, both in
experimental settings and from theoretical considerations. Dating back to the 1960s,
Kraichnan (1962), Howard (1963), Busse (1969), and Spiegel (1971) all suggested
– either from physical arguments or as estimates from the Boussinesq equations
under some statistical assumptions – the value p = 1

2
(with logarithmic corrections in

Kraichnan’s theory). In the 1990s an idea of Hopf (1941), relying on the decomposi-
tion of the dependent variables into ‘background’ and ‘fluctuating’ components, was
revived and used to derive rigorous bounds for bulk-flow quantities in several funda-
mental fluid flows, with no a priori assumptions. When applied to Rayleigh–Bénard
convection with fixed temperature boundary conditions, the resulting exponent in the
bound was again p = 1

2
(Doering & Constantin 1996).

Upper-bound analyses such as those referred to above have produced rather
sharp results by comparison with experimental data or theoretical expectations (per-
haps within logarithms) in a number of fluid flows including shear flow, infinite
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Prandtl number convection, and porous-medium convection; see Doering & Con-
stantin (1992, 1998) and Constantin & Doering (1999). In the case of finite Prandtl
number convection, however, the upper bounds lie well above the experimental data.
Indeed, typical scaling exponents seen in experiments typically fall in the range
0.27 6 p 6 0.31 (Heslot, Castaing & Libchaber 1987; Niemela et al. 2000; Xu,
Bajaj & Ahlers 2000), although there is some debate as to whether higher expo-
nents have been measured (Chavanne et al. 1997). For a recent review see Kadanoff
(2001).

It is natural to wonder whether these unresolved discrepancies could be due to
some fundamental incompatibility between the model from which the theoretical
bounds are deduced and the physical experiments they are intended to describe. In
particular, previous analyses have assumed that the temperature of the boundaries
in a convection experiment remains fixed, which requires that the bordering plates
must be far better heat conductors than the fluid they contain. This is the case for
many experiments when the conductivity of the plates is many orders of magni-
tude greater than that of the fluid and the Nusselt numbers are relatively modest.
However, some convection experiments, for instance those using liquid mercury for
the fluid and copper for the plates, provide an exception. The relative conductiv-
ities of mercury and copper differ only by a factor of 50 (8.3 J m−1 K−1 for Hg,
401 J m−1 K−1 for Cu), so when the Nusselt number exceeds 50 (the experiment in
Glazier et al. (1999) reaches Nusselt values of about 100), the fluid is effectively
able to conduct heat at least as well as the plates. For such a flow the boundaries
(i.e. the plates) cannot be maintained at fixed temperature. This problem presents
itself for any convective flow whose Nusselt number exceeds the ratio of conduc-
tivities between plates and fluid, and should properly be taken into account in
theoretical studies seeking uniform bounds in the asymptotic limit of large Rayleigh
number.

Based on these considerations, we have begun to focus on how different tempera-
ture boundary conditions, taking the thermal properties of the plates into account,
might affect the transport of the flow. One of the simplest variants of the boundary
conditions to consider – apart from fixed temperature boundaries – is that of fixed
heat flux. Such boundary conditions describe scenarios where the plates conduct
heat poorly compared with the fluid. These boundary conditions have profound
effects on the transition from conduction to convection: when the flux, rather than
the boundary temperatures, is fixed, the bifurcation becomes a long-wave instability
(see Hurle, Jakeman & Pike 1967; Chapman & Proctor 1980). In addition, the
weakly nonlinear regime favours square-pattern convection, in contrast to the two-
dimensional rolls favoured in the fixed temperature problem (Busse & Riahi 1980).

In this brief paper, we introduce the effect of varying temperature boundary con-
ditions by presenting the fundamental uniform a priori bound for the fixed flux
problem, following the methods of the ‘background field’ approach (see Doering &
Constantin 1996). In subsequent work we will present the results of more comprehen-
sive investigations, incorporating numerical and analytical studies of the fixed flux
case, as well as of the experimentally more realistic situation in which the fluid is
bounded by plates of finite thickness and conductivity.

The structure of this paper is as follows: In the next section we present the
equations of motion and derive expressions for the fundamental flow quantities. In
§ 3 we formulate a bounding principle for the heat transport. A rigorous upper bound
on Nu as a function of the (non-dimensional) imposed heat flux and the conventional
Rayleigh number is derived in the final § 4.
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2. Statement of the problem
The equations of motion based on the Boussinesq approximation are

u∗t + u∗ · ∇u∗ +
1

ρ
∇P ∗ = ν∇2u∗ + αg(T ∗ − T0)ez, ∇ · u∗ = 0, (2.1)

T ∗t + u∗ · ∇T ∗ = κ∇2T ∗, (2.2)

∂T ∗

∂z

∣∣∣∣
z=0,h

= −β and u∗|z=0,h = 0, (2.3)

where ν and κ are the diffusivity constants for momentum and temperature, α is the
thermal expansion coefficient, g is the acceleration due to gravity, ρ the density at
some reference temperature T0, κβ the constant heat flux at the boundaries and h the
height of the layer. Variables with an asterisk are dimensional and we take periodic
boundary conditions in the horizontal directions. A non-dimensional set of variables
can be obtained by taking h, h2/κ and hβ as the relevant space, time and temperature
scales. The equations for the non-dimensional velocity u = (u, v, w) and temperature
T are

ut + u · ∇u+ ∇P = σ∇2u+ σR̂ T ez, ∇ · u = 0, (2.4)

Tt + u · ∇T = ∇2T , (2.5)

∂T

∂z

∣∣∣∣
z=0,1

= −1 and u|z=0,1 = 0, (2.6)

where R̂ = αgβh4/(νκ) and σ = ν/κ is the usual Prandtl number. The control param-

eter R̂ is not generally the same as the usual Rayleigh number Ra, but is related to
it and the familiar Nusselt number Nu by

R̂ = RaNu. (2.7)

To see how this follows from the equations of motion, we first introduce some
notation: for functions f(x, y, z), g(t) we define the horizontal and time averages by

f̄(z) =
1

A

∫
f(x, y, z) dx dy, (2.8)

and

〈g〉 = lim sup
T→∞

1

T

∫ T

0

g(t) dt, (2.9)

where A is the (non-dimensional) area of the plates. In addition,
∫
f denotes a volume

integral over the entire fluid layer. We define the temperature difference as

∆T ∗ = 〈T ∗(0)− T ∗(h)〉, (2.10)

∆T = 〈T (0)− T (1)〉 (non-dimensional). (2.11)

Recalling that Ra = αgh3∆T ∗/(νκ) and ∆T ∗ = hβ∆T , we now see that R̂ and Ra are
related by

Ra = R̂ ∆T . (2.12)

To define the Nusselt number, Nu, we first write the temperature equation (2.5)
as Tt + ∇ · J = 0, where J = uT + J c is the heat current, and J c = −∇T is the
conductive part of J . The Nusselt number is defined to be the ratio of the (average)
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total convective and conductive heat transport in the vertical direction to the purely
conductive heat transport:

Nu =

1

A

〈∫
J · ez

〉
1

A

〈∫
J c · ez

〉 . (2.13)

Since

1

A

〈∫
J c · ez

〉
=

1

A

〈∫
−Tz

〉
(2.14)

=
1

A

〈∫ (∫ 1

0

−Tzdz
)

dx dy

〉
= ∆T , (2.15)

we have

Nu = 1 +

1

A

〈∫
wT

〉
∆T

. (2.16)

Expression (2.16) may be further simplified by relating the quantities ∆T and 〈∫ wT 〉.
To this end, we take the horizontal average of the temperature equation (2.5), multiply
by z and integrate over z to find

d

dt

(∫ 1

0

zT dz

)
+

∫ 1

0

z(wT − Tz)z dz = 0. (2.17)

Integrating by parts the second term, we find∫ 1

0

z(wT − Tz)z dz = z(wT − Tz)
∣∣1
0
−
∫ 1

0

(wT − Tz) dz (2.18)

= 1− 1

A

∫
wT + T (1)− T (0). (2.19)

Using this last expression in (2.17) and taking the time average gives〈
d

dt

(∫ 1

0

zT dz

)〉
+ 1− 1

A

〈∫
wT

〉
− ∆T = 0. (2.20)

The first term in (2.20) vanishes because
∫
T 2 is uniformly bounded in time, a fact

that can be deduced from the analysis in this paper (see the analogous discussion in
Doering & Constantin 1992). Thus we have the identity

1

A

〈∫
wT

〉
+ ∆T = 1. (2.21)

This expression may now be used in (2.16) to deduce

Nu =
1

∆T
, (2.22)

which, together with (2.12), implies

R̂ = NuRa. (2.23)

We may also relate Nu to the viscous energy dissipation rate in the flow. Taking
the inner product of the momentum equation (2.4) with u, integrating over the layer
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and taking the time average, and then using (2.21) gives

∆T = 1− 1

AR̂

〈∫
|∇u|2

〉
. (2.24)

We are now ready to discuss how one might establish a bound for the heat transport
in such a flow. The key is to bound the temperature difference, ∆T , from below in
terms of R̂, thereby bounding Nu = 1/∆T from above and Ra = R̂ ∆T from below.
These estimates can then be combined into a single inequality producing an upper
bound for Nu in terms of Ra.

3. Formulation of the bound
We now decompose the temperature field into a background τ(z) – which carries the

boundary conditions of the flow – and a fully space- and time-dependent component θ:

T = τ(z) + θ, (3.1)

where we impose τ′(0) = τ′(1) = −1, so the boundary conditions on θ = θ(x, y, z, t)
are θz

∣∣
z=0,1

= 0.

Inserting (3.1) into the temperature equation produces an evolution equation for θ:

θt + u · ∇θ = ∇2θ + τ′′ − wτ′. (3.2)

Multiplying by θ and taking the space–time average of this last expression gives the
constraint

∆T =
1

A

〈∫
|∇θ|2 +

∫
θzτ
′ +
∫
θwτ′

〉
+ ∆τ, (3.3)

where ∆τ = τ(0)−τ(1). In (3.3) the term θzτ
′ appears and turns out to be inconvenient

when formulating a variational principle for the bound we seek. To eliminate it we
multiply the θ-equation (3.2) by τ and integrate. After some integration by parts, time
averaging and the use of incompressibility, we deduce that

1

A

〈∫
θzτ
′
〉

=
1

A

〈∫
θwτ′

〉
−
∫ 1

0

τ′2 dz + ∆τ. (3.4)

Using this expression we may rewrite (3.3) as

∆T =
1

A

〈∫
|∇θ|2 + 2

∫
θwτ′

〉
+ 2∆τ−

∫ 1

0

τ′2 dz. (3.5)

Taking a weighted average of (2.24) and (3.5), we have

∆T = b∆T + (1− b)∆T (3.6)

= 2b∆τ− b
∫ 1

0

τ′2 dz + (1− b) +
b

A

〈∫ (
|∇θ|2 +

b− 1

bR̂
|∇u|2 + 2θwτ′

)〉
. (3.7)

Hence

∆T = Bb(τ) +
b

A
Qτ,b(θ, w), (3.8)

where

Bb(τ) = 2b∆τ− b
∫ 1

0

τ′2 dz + (1− b), (3.9)
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2

Figure 1. A graph of τδ(z). Note that ∆τ = τ(0)− τ(1) = 2δ.

and

Qτ,b(θ, w) =

〈∫ (
|∇θ|2 +

b− 1

bR̂
|∇u|2 + 2θwτ′

)〉
. (3.10)

The technical basis for the bounding procedure is as follows: if we can choose τ(z)
and b > 1 so that the quadratic form Qτ,b(θ, w) > 0 for all relevant fields θ and w,
then

∆T > Bb(τ). (3.11)

4. An explicit bound
We will now produce a background profile for which the quadratic form Qτ,b is

positive definite. Consider the one-parameter family of profiles shown in figure 1;

note that for this choice of the profile, ∆τ =
∫ 1

0
τ′2dz = 2δ. We choose b = 1 + cδ,

with c > 0.
With these choices for τ and b it is easy to verify that

B = (2− c)δ + 2cδ2 > (2− c)δ, (4.1)

Q =

〈∫ (
|∇θ|2 +

cδ

(1 + cδ)R̂
|∇u|2 + 2θwτ′

)〉
, (4.2)

where we have dropped subscripts on B and Q. To incorporate the incompressibility
constraint – which is absolutely essential in this analysis – we will use the horizontal
periodicity of the layer and recast the problem in Fourier variables:

w(x, z) =
∑
k

eik·xwk(z), (4.3)

where x = (x, y) and k is the horizontal wave vector; we will also use the notation k2 =
|k|2. The other variable θ may be expanded in the same way. Using incompressibility
(and writing w̃ for the complex conjugate of w and D = d/dz) we may express the
quadratic form as

Q >∑
k

Qk, (4.4)
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where

Qk =

〈∫ 1

0

(
|Dθk|2 + k2|θk|2 +

cδ

(1 + cδ)R̂

(
1

k2
|D2wk|2 + 2|Dwk|2 + k2|wk|2

)

+2Re[θkw̃k]τ
′
)

dz

〉
. (4.5)

Note that equality in (4.4) holds for functions of x and z alone, and that the quadratic
form Q is positive if for all k, Qk > 0 as a quadratic form.

Because wk vanishes at both plates for all k so does the product θkw̃k. Hence, for
z 6 1

2
, we have

|θkw̃k(z)| =
∣∣∣∣∫ z

0

D(θk(ζ)w̃k(ζ)) dζ

∣∣∣∣ 6 ∫ z

0

|θkDw̃k| dζ +

∫ z

0

|Dθkw̃k| dζ. (4.6)

Furthermore, since wk and Dwk both vanish at z = 0 (the latter by virtue of the
incompressibility constraint and the ‘no-slip’ boundary condition for the velocity
field), the Fundamental Theorem of Calculus and the Cauchy–Schwarz inequality
imply

|wk(z)| 6 √z
(∫ 1/2

0

|Dwk(ζ)|2 dζ

)1/2

≡ √z ‖Dwk‖[0,1/2], (4.7)

|Dwk(z)| 6 √z
(∫ 1/2

0

|D2wk(ζ)|2 dζ

)1/2

≡ √z ‖D2wk‖[0,1/2]. (4.8)

Using these estimates in (4.6), another application of the Cauchy–Schwarz inequality,
and the fact that AB 6 1

2
(A2/α+ αB2) for any α > 0, we obtain

|θkw̃k(z)| 6
(
α

k2
‖D2wk‖2

[0,1/2] + γ‖Dwk‖2
[0,1/2] +

k2

α
‖θk‖2

[0,1/2] +
1

γ
‖Dθk‖2

[0,1/2]

)
z

2
√

2
,

(4.9)

where γ > 0 is also adjustable. A similar estimate holds for z > 1
2
, and using them

together we have∣∣∣∣∫ 1

0

θkw̃kτ
′ dζ
∣∣∣∣ 6 ∫ δ

0

|θkw̃k dζ|+
∫ 1

1−δ
|θkw̃k| dζ (4.10)

6
δ2

4
√

2

(
α

k2
‖D2wk‖2

[0,1] + γ‖Dwk‖2
[0,1] +

k2

α
‖θk‖2

[0,1] +
1

γ
‖Dθk‖2

[0,1]

)
.

(4.11)

Inserting this estimate into (4.5) and choosing α = γ = δ2/2
√

2 and δ ∼ (8c/R̂)1/3

ensures that Q > 0. The resulting lower bound on ∆T is

∆T > (8c)1/3(2− c)R̂−1/3. (4.12)

The coefficient above has a maximum value of 3/21/3 (when c = 1
2
), resulting in
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the bound

∆T >
3

21/3
R̂−1/3, (4.13)

so that using (2.12) and (2.22),

Ra >
3

21/3
R̂2/3 and Nu 6

21/3

3
R̂1/3, (4.14)

and we finally obtain the bound in terms of Nu and Ra:

Nu 6

(
21/3

3

)3/2

Ra1/2 < 0.28× Ra1/2. (4.15)

This is the main result of the paper; we see that while fixing the flux at the boundaries
does not (apparently) lower the upper bound exponent from p = 1

2
, it certainly does

not raise it either.† It remains to be seen if this exponent really is optimal, and just
how far the prefactor will be decreased by more precise analyses.
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