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Coarsening to chaos-stabilized fronts
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We investigate a model for pattern formation in the presence of Galilean symmetry proposed by Matthews
and Cox [Phys. Rev. E 62, R1473 (2000)], which has the form of coupled generalized Burgers- and Ginzburg-
Landau-type equations. With only the system size L as a parameter, we find distinct “small-L” and “large-L”
regimes exhibiting clear differences in their dynamics and scaling behavior. The long-time statistically stationary
state contains a single L-dependent front, stabilized globally by spatiotemporally chaotic dynamics confined
away from the front. For sufficiently large domains, the transient dynamics include a state consisting of several
viscous shocklike structures that coarsens gradually, before collapsing to a single front when one front absorbs
the others.
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I. INTRODUCTION

In the exploration of the rich and diverse range of spa-
tiotemporal dynamics observed in nonlinear, nonequilibrium
spatially extended systems, it has proved particularly fruitful
to investigate comparatively simple model partial differential
equations (PDEs) whose solutions capture the essential fea-
tures of the phenomena under investigation. Thus Burgers’
equation has been extensively studied for the evolution and
statistics of shocks; the Ginzburg-Landau (GL) equation and
its generalizations describe the dynamics and stability of mod-
ulations of patterned states; and the Kuramoto-Sivashinsky and
other models display spatiotemporal chaos [1]. In this paper
we discuss a system describing the amplitude evolution for
pattern formation with symmetry, which appears to combine
features of several of these canonical systems and displays a
surprising wealth of behaviors.

We investigate the Matthews-Cox (MC) equations [2]

AT = A + 4AXX − if A, (1)

fT = fXX − |A|2X, (2)

on a one-dimensional L-periodic domain, where A is complex,
f is real, and fX ≡ ∂Xf ≡ ∂f/∂X (similarly for the other
derivatives). Equations (1)–(2) were initially derived in the
context of the Nikolaevskiy PDE

ut + uux = −∂2
x

[
ε2 − (

1 + ∂2
x

)2]
u. (3)

This equation, which was proposed originally to model
seismic-wave behavior in viscoelastic media [3] and has
subsequently arisen in models of phase dynamics in oscillatory
reaction-diffusion systems [4,5] and transverse instabilities of
traveling fronts [6], appears to be a canonical model for short-
wave pattern formation with reflection symmetry x �→ −x,
u �→ −u and Galilean invariance x �→ x − vt , u �→ u + v (v
constant) [2,7].
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Unlike in more common pattern-forming contexts de-
scribed at onset by the GL equation, the O(ε) stationary
rolls in the Nikolaevskiy equation (3) are all unstable for
all ε > 0 [2,6,8,9]. Instead, solutions of Eq. (3) exhibit
spatiotemporal chaos with strong scale separation [10,11],
with coupling between the weakly unstable pattern at wave
numbers k ≈ 1 and the neutrally stable long-wave mode with
k ≈ 0. This suggests the ansatz u(x,t) ∼ εα1A(X,T )eix +
c.c. + εβf (X,T ) + · · · for the envelopes A and f of the
pattern and long-wave modes, respectively, where X = εx,
T = ε2t . Matthews and Cox [2] showed that the asymptot-
ically self-consistent scaling as ε → 0 is α1 = 3/2, β = 2,
and hence derived Eqs. (1)–(2) from the Nikolaevskiy PDE
as the leading-order modulation equations [although there is
numerical evidence that the scaling behavior on the attractor of
Eq. (3) may be anomalous and insufficiently described by this
ansatz [11]].

As pointed out in Ref. [2], the asymptotically leading-
order modulation equations for pattern formation with these
symmetries generally have the structure of Eqs. (1)–(2) (with
at most one free parameter, after rescaling), where we note
that the action of the odd reflection symmetry is X �→ −X,
f �→ −f , A �→ −A∗, while the Galilean invariance acts on
the amplitudes via X �→ X − εV T , f �→ f + V , A �→ AeiV T

(with v = ε2V ). Beyond the connection with Eq. (3), the MC
equations thus deserve study as generic amplitude equations
in their own right. We observe that the long-wave amplitude
f plays the role of a velocity-like variable in the direction
of the pattern; since its spatial average is preserved by
Eq. (2), by Galilean invariance we may assume f to have
mean zero.

II. CHAOS-STABILIZED FRONTS

In describing properties of the MC equations (1)–(2),
we emphasize the dynamics of the large-scale mode f ,
since the pattern amplitude A appears to be driven by f .
We note that several aspects of the behavior for relatively
small L have been previously described by Sakaguchi and
Tanaka [12].

The snapshot of a solution for domain size L = 51.2π

shown in Fig. 1 is typical of the statistically stationary behavior
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FIG. 1. (Color online) Snapshot at a fixed time T1 = 28,000 of
f (X,T1) (thick blue line) and |A(X,T1)| (thin black line) for a solution
of Eqs. (1)–(2) with L = 51.2π ≈ 160.8.

for “small” domains. The overall structure of f resembles a
perturbed viscous shock, with f decreasing essentially linearly
within the “front” region. Simultaneously, |A| vanishes in the
center of the front; Sakaguchi and Tanaka hence call this an
“amplitude death” state [12]. The time evolution of a typical
solution shown in Fig. 2 clearly shows the invariance of the
front structure in f and the suppression of the roll amplitude
A within the front region.
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FIG. 2. (Color online) Space-time plots of long-time solutions
(a) f (X,T ) and (b) |A(X,T )| of the MC equations for L = 51.2π ,
and over a time interval of length 5 × 104 in T .

On the remainder of the domain, chaotic fluctuations in f

[on O(1) timescales] are superposed on the approximately
linear average positive slope and correlated (in space and
time) with chaos in A. This coexistence of an ordered front
(amplitude death state) and spatiotemporal chaos in spatially
separate regions is robust on all domains L � L0 large enough
to sustain the front [12].

The space-time plot indicates that the overall viscous shock
profile in f is nonstationary but maintains its shape up to
small fluctuations; that is, short-time averages1 〈f (X,·)〉τ are
invariant up to translation. Denoting the averaged profile by
g(X) = g(L)(X), where we center the front so g(L/2) = 0,
gX(L/2) < 0, and defining the front displacement s(T ) so
that the instantaneous front position is Xs(T ) = L/2 + s(T ),
we may decompose the large-scale mode as f (X,T ) =
g[X − s(T )] + f̃ [X − s(T ),T ], where f̃ denotes fluctua-
tions about the mean profile. The unsteady dynamics in A

and f̃ are then essentially confined to the region where
gX � 0 and to the vicinity of the local extrema of g

[see Fig. 3(c)].
To help clarify this unusual behavior, we observe that Eq. (2)

for the large-scale mode f has the form of a conservation
law [12],

fT = −JX, where J = −fX + |A|2. (4)

Taking long-time averages, 〈J 〉X = −〈fT 〉 = 0, so in statisti-
cal equilibrium, the time-averaged flux J is uniform in X,
〈J 〉 = 〈−fX + |A|2〉 ≡ γ . Integrating over the domain and
using periodicity, we find

γ = γ (L) = 1

L

∫ L

0
〈|A(X,·)|2〉 dX > 0. (5)

Now for a stationary amplitude death domain, where
〈|A|2〉 = 0,we have γ = −〈fX〉; this confirms that amplitude
death can occur only where f is decreasing on average. [In
fact, due to the apparent separation of time scales between
the rapid fluctuations f̃ , on O(1) times, and the slow
overall drift of the mean profile g(X), short-time averaging
seems sufficient to conclude 〈fT 〉τ ≈ 0, so that the mean
midfront slope is gX(L/2) = −γ .] By Eq. (5) the (averaged)
slope −γ of the large-scale mode f in the center of the
amplitude death state thus seems to be globally determined,
being balanced by the mean-square amplitude of the pattern
mode A due to chaotic dynamics concentrated outside the
front region.

Note that also γ = 〈|A|2〉 wherever 〈fX〉 = 0, relating
the front slope to the fluctuations in A at extrema of the
averaged profile. Indeed, in the absence of A, f satisfies a
heat equation and thus by Eq. (4) flows away from local
maxima and toward local minima, leading to spreading and
dissipation of the front; the added forcing term in Eq. (2) when
|A|2X 
= 0 increases the flux J so as to maintain the averaged

1Short-time averages 〈f (X,·)〉τ are taken over time intervals τ long
relative to the O(1) timescales of the chaotic fluctuations, but short
compared with front translations or transient coarsening (we use
τ � 40).
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FIG. 3. (Color online) (a) and (b) Two representations of the long-
time-averaged (centered) profile g(X) = 〈f (X + s(·),·)〉 of the large-
scale mode f for various L: (a) scaled horizontally and vertically,
L−1g(LY ) for Y = X/L ∈ [0,1]; (b) unscaled, half of the (odd)
profile, g(X) for X ∈ [0,L/2]. (c) Centered time-averaged pattern
amplitude 〈|A(LY,·)|2〉. Domain sizes are (“small”: gray, red online)
L = 25.6π , 38.4π , 51.2π , 64π ; (“intermediate”: green, dashed lines)
L = 76.8π , 89.6π , 102.4π , 128π , 153.6π ; and (“large”: black, blue
online) L = 204.8π , 256π , 307.2π , 358.4π , 409.6π , 460.8π , 512π ,
and 819.2π . Averages were taken over time periods T = 1 × 105

(small, intermediate) and 2 × 104 (large), with 	T = 10 between
snapshots.

overall flux balance, thereby stabilizing the (averaged) local
extrema. The stabilization mechanism in the MC equations
thus appears to act globally,2 with the chaotic dynamics being
instrumental in sustaining the front (and amplitude death
state); we denote the observed structures “chaos-stabilized
fronts.”

[We remark that Eq. (1) does not contain the usual
stabilizing GL cubic term, permitting Eqs. (1)–(2) to support a
family of exponentially growing solutions A(X,T ) = A0e

T ,
f (X,T ) = 0; that is, the MC equations do not have a
bounded global attractor. However, these growing solutions are
dynamically unstable, in the sense that they are overtaken by
faster-growing spatially varying perturbations [2]; and in our
numerical simulations we have not observed such solutions.]

2Our findings are inconsistent with the local stability criterion
(neglecting the sign of fX) proposed in Ref. [12], that the amplitude
death state is stable when the gradient of f is sufficiently large,
|fX| > f0c for f0c ≈ 0.44; for large L we find γ � O(1/L) and
observe stable fronts, for instance, with γ � 0.25 for L � 1000 [see
Fig. 4(b)].

To investigate the behavior of the MC equations on spa-
tially periodic domains systematically, we have numerically
integrated Eqs. (1)–(2) using a pseudospectral method in space
and an exponential time differencing (ETDRK4) scheme with
step size H = 0.02. The domain length L, the only free
parameter in the system, was chosen to be L = 2π × 64m/10
for integers m ranging from 2 to 64; correspondingly, we
used between 29 and 214 Fourier modes. In computing time
averages, we integrated until the system reached a statistically
stationary single-front state, and then averaged over 103–104

snapshots separated typically by time intervals 	T = 10. All
averaging was done within the frame of reference of the front;
that is, we first determined the front displacement s(T ) and
used it to align A and f so that the front was centered at
X = L/2. In particular, the mean profiles were computed by
g(X) = 〈f (X + s(·),·)〉.

III. AVERAGED PROFILES

As seen in Fig. 3, the averages of f and |A| are, respectively,
odd and even about X = L/2, recovering the reflection
symmetry of the underlying PDEs (1)–(2). More interestingly,
though, the time-averaged profiles g(X) for L � L0 depend
strongly on L, with the behavior falling into three distinct
regimes.

For relatively “small” domains, L0 � L � L1 ≈ 220, the
scaled profiles in Fig. 3(a) approximately coincide, indicating
a scaling form for g: For some fundamental shape function G,
periodic on [0,1], we have g(X) ≈ LG(Y ) (with Y = X/L).
In this “small-L” regime the scaling relation is highly accurate
within the front [but is weakly violated outside it: the slope
α = gX(0) in the active region increases slowly with L; see
Fig. 4(a)]; in particular, the midpoint slope is independent of
L, with −γ = gX(L/2) = G′(0.5) ≈ −4.6 (cf. Ref. [12]); see
Fig. 4(b), where we have also numerically verified Eq. (5). We
also find that the relative sizes of the front and chaotic regions
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FIG. 4. (Color online) (a) Slope α = gX(0) of averaged profile
at midpoint of chaotic region. (b) Absolute value of midfront slope
γ = −gX(L/2) (�), shown with the mean-square average pattern
amplitude L−1

∫ L

0 〈|A(X,·)|2〉dX (�), verifying Eq. (5). Lengths L

and colors are as in Fig. 3; the vertical lines at L1 ≈ 220 and L2 ≈ 560
indicate approximate transitions between “small,” “intermediate,” and
“large” regimes.
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FIG. 5. (Color online) Representative trajectories of the
front displacement s(T ) about X = L/2 for the “small”
domains L = 38.4π (red ◦) and 51.2π (blue �), and “in-
termediate” sizes L = 76.8π (green), 102.4π (brown �), and
153.6π (magenta �).

remain fixed, with 〈|A|2〉(X) ≈ 5 approximately constant and
L-independent in the chaotic region [Fig. 3(c)]. For these
“small” domain sizes, the front translates over long times
(recall Fig. 2); interestingly, the statistics of the front motion
appear consistent with a random walk [13], as suggested by
the trajectories of s(T ) shown in Fig. 5.

The (approximate) scaling form for the time-averaged
profile g(X) observed for “small” domains breaks down for
larger L. Instead, for domain sizes in an “intermediate” regime
with lengths L1 � L � L2 ≈ 560, the amplitude of g begins
to level off, the front becomes wider and less steep, and
chaotic fluctuations of A and f decrease in amplitude (see
Figs. 3–4). Furthermore, the variance of the front displacement
s(T ) decreases strongly with L, until the translation becomes
imperceptible (Fig. 5).

This behavior is transitional to that of “large” domains
L � L2 ≈ 560. In this regime the front is stationary, s(T ) ≡ 0;
the amplitude of g(X) saturates at max g ≈ 62, as does
the maximum slope in the chaotic region, α = gX(0) ≈ 0.5.
Indeed, Fig. 3(b) shows that the mean profile g(X) near
X = 0 becomes invariant with increasing L; this saturation
of the profile indicates to us that we have reached the large-L
asymptotic regime of (1)–(2). Since the width of the amplitude
death region continues to grow with L, while the height is
bounded, the front slope −γ decays with L, and hence so does
the amplitude of the fluctuations in A: For large L the spatially
confined chaotic dynamics superposed on the mean profile are
strongly suppressed.

IV. TRANSIENT BEHAVIOR

The strong L-dependence of the properties of the MC
equations, within identifiable domain size regimes, is apparent
also in the transient approach to the long-time statistically
stationary state, as summarized in the time evolution of
w(T ) = [L−1

∫ L

0 f (X,T )2dX]1/2—analogous to an interface
width in the context of surface growth—as in Fig. 6. The
snapshots from a typical time evolution for a “large” domain
in Fig. 7 demonstrate an extended coarsening period followed
by a remarkable collapse to a single front.

From small random data, initial growth rapidly establishes
a sawtooth pattern in f , as in Fig. 7(a): a concatenation
of structures, of varying widths and corresponding heights,
locally reminiscent of the statistically stationary states in
“small” domains (see Fig. 8). Once this metastable state
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FIG. 6. (Color online) Evolution of w(T ) = [L−1
∫ L

0
f (X,T )2dX]1/2 for the “small” domains (red) L = 25.6π (◦)
and 51.2π (�); “intermediate” domains (green) L = 89.6π (�) and
128π (�); and “large” domains (blue) L = 256π (�) and 307.2π (�),
computed to T = 8 × 104.

of multiple Burgers-like viscous shocks with superposed
chaotic fluctuations is established, a slow coarsening process
ensues: Front structures grow and merge with adjacent fronts,
leading to a gradual increase of length scales and of w(T )
[Fig. 7(a)–7(d)].

For “small” domains, for which the long-time state has
the (approximate) scaling form G on average, this coarsening
concludes once there is a single front. However, for “inter-
mediate” and “large” domains, the gradual growth of w(T )
through coarsening is followed by a “jump” in w(T ) (see
Fig. 6). The initiation times for these jumps are not monotonic
in L and are widely distributed for each L for varying initial
conditions (we have observed them to occur throughout the
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FIG. 7. (Color online) Snapshots of f (thick blue line) and |A|
(black; for clarity we plot 5|A|) showing coarsening and collapse to
a single front for L = 307.2π ≈ 964.8.
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FIG. 8. (Color online) Large-scale mode f at T = 28,000 for the
“large” domain L = 307.2π (thick blue line) with, for comparison,
six (red) copies of the L = 51.2π profile from Fig. 1.

range T ≈ 2–8 × 104), while the growth rate of w(T ) during
the jump appears to be L-independent [13]. This behavior
of w(T ) reflects qualitative changes in the profile f (X,T ),
as seen in Fig. 7(d)–7(h). Specifically, having (presumably)
exceeded a critical size, one of the front structures begins to
dominate and then grows relatively rapidly by engulfing its
neighbors until a state with an L-dependent single front is
attained.

Finally, for “large” domains, w(T ) overshoots its asymp-
totic value (Fig. 6), since following the collapse to a single
front, the profile of f is not initially linear in the amplitude
death region; f subsequently undergoes slow diffusive relax-
ation [by Eq. (2) with |A| = 0] to the time-asymptotic linear
front profile [Fig. 7(h)–7(j)].

V. DISCUSSION

The Matthews-Cox equations (1)–(2), the leading-order
amplitude equations for finite-wavelength pattern formation
with Galilean invariance, form a relatively simple deterministic

system displaying a remarkable richness of behaviors: a
domain size-dependent coexistence of ordered and chaotic
states, with fronts stabilized by spatiotemporal chaos, attained
after a multiple-stage transient including slow coarsening and
rapid collapse to the single-front time-asymptotic state. In
light of our observations, we expect that this system provides
interesting theoretical challenges.

The structure of the MC equations is reminiscent of that
of other well-known systems. For instance, viewing Eq. (2)
as a heat equation for f with (chaotic, spatially nonuniform)
forcing, using the heat kernel to express f as a quadratic
functional of A and substituting, the −if A coupling term in
Eq. (1) acts as a nonlocal cubic stabilizing term in a Ginzburg-
Landau-type equation.

Alternatively, in light of the viscous shocklike behavior in
f , it may be fruitful to view Eq. (2) as a generalized viscous
Burgers’ equation with a nonlocal forcing term: In this case,
the fronts in f are driven not by the usual ffX Burgers’
nonlinearity (which appears at higher order in the MC scaling
[2,11]), but rather by gradients in |A|2, where A is determined,
for a given f (X,T ), via the linear, nonconstant-coefficient
PDE (1). Such considerations may facilitate a theoretical
understanding of the unusual behavior we have described in
the MC equations.
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