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Viscous Shocks in the
Destabilized Kuramoto-
Sivashinsky Equation
We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for com-
plex spatio-temporal dynamics in the presence of an additional linear destabilizing term.
In particular, we show the phase space origins of the previously observed stationary
“viscous shocks” and related solutions. These arise in a reversible four-dimensional
dynamical system as perturbed heteroclinic connections whose tails are joined through a
reinjection mechanism due to the linear term. We present numerical evidence that the
transition to the KS limit contains a rich bifurcation structure even within the class of
stationary reversible solutions. �DOI: 10.1115/1.2338656�
Introduction
Nonlinear spatially extended dynamical systems with many de-

rees of freedom and displaying complex spatial and temporal
ynamics and pattern formation are ubiquitous in scientific and
ngineering applications �1�. The understanding of typical features
f such complex and chaotic dynamics has been greatly advanced
y the study of canonical models. The Kuramoto-Sivashinsky
KS� equation

ut + uxxxx + uxx + uux = 0 �1�

as been the subject of extensive study in recent decades as a
rototypical example of spatio-temporal chaos �STC� in one space
imension. Originally derived in the context of plasma instabili-
ies �2�, flame front propagation �3� and phase turbulence in
eaction-diffusion systems �4�, this model has been recognized as

generic model for long-wave primary instabilities in the pres-
nce of appropriate symmetries �5�, in particular spatial and tem-
oral translation invariance, the odd symmetry �parity� u�x , t�→
u�−x , t�, and Galilean invariance. Indeed, the role of the KS
quation as a modulation equation for spatially periodic solutions
n a reaction-diffusion system has been confirmed through a recent
roof �6� of closeness of corresponding solutions. On sufficiently
arge L-periodic domains, the nonlinear interaction of O�L /2��
inearly unstable Fourier modes gives rise to complex dynamics of
q. �1� in which the long-wave modes act as a “heat bath,” driving

he chaotic dynamics of the most energetic modes at length scales
�2��, so that upon damping or removal of the large-scale modes,

he dynamics settles down to a regular roll solution �7,8�.

1.1 Stationary Solutions of KS Equation. The understand-
ng of the complex dynamics and intricate bifurcation picture of
q. �1� for varying domain sizes L begins with the �mostly un-
table� stationary and traveling solutions. Since Eq. �1� with
t=0 has a first integral �using uux= �u2 /2�x�, these may be studied
s L-periodic solutions of a third-order ordinary differential equa-
ion �ODE�, and extensive investigations have revealed a rich
tructure of odd and asymmetric solutions �9–12�.

In particular, the “roll” solutions �also called “cellular” states or
uring patterns� form the backbone to the KS spatial structure,
nd they have been studied in some detail �13�: the N-modal states
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have periodicity L /N, lie on the branch bifurcating from the trivial
solution at L=N ·2�, and can be constructed via weakly nonlinear
analysis using a Fourier expansion in multiples of the fundamental
wave number 2�N /L.

Of particular interest to our work on a modified KS equation
are certain stationary spatially odd periodic solutions which con-
sist of periodically matched so-called regular �or monotonic� and
oscillatory shocks, as in Fig. 1. Such solutions, their bifurcations,
and relations to cells have been studied, for instance, in Refs.
�10,14�; they form a solitary wave train from periodically concat-
enated perturbations of “solitary waves” �homoclinic orbits� such
as constructed asymptotically in Ref. �15�. Due to the phase space
geometry of these solutions �see Fig. 1�b��, we shall refer to them
as “bubbles.”

1.2 The dKS Equation. We consider the destabilized
Kuramoto-Sivashinsky �dKS� equation �16�

ut + uxxxx + �uxx + uux = �u �2�

restricting ourselves to the �invariant� subspace of zero-mean so-
lutions. For �=0 and ��0, Eq. �2� is �a rescaling of� the
Kuramoto-Sivashinsky Eq. �1�. We will typically consider �fol-
lowing Ref. �16�� �=2, in which case Eq. �2� may be written in
the form ut=−�1+�x

2�2u+ ��+1�u−uux; in this form, the role of
the term ��+1�u in destabilizing the zero state becomes apparent.
However, we retain the freedom to set the parameter � to 0, as the
shock-like stationary solutions of Eq. �2� that arise for ��0 are
robust in this limit. The additional linear term in Eq. �2� breaks the
Galilean invariance for ��0, and as such �for �=2 and −1��
�0� has been studied in pattern formation and surface growth
contexts; see �5,16�. The �u term vertically shifts the linear dis-
persion relation

� = − k4 + �k2 + � �3�

for perturbations from the trivial state, and thus effectively damps
�for ��0� or drives �for ��0� the long-wave modes. The effect
on the dynamics is thus as for numerical experiments in which the
large-scale modes in KS were suppressed or driven excessively
�7,8�: For sufficiently small �+1�0, the STC decays and the
dynamics settle down to the regular roll state, while for ��0
sufficiently large, solutions display rapidly traveling structures
and shock-like features. The understanding of STC in the KS
equation is thus advanced by studying the transition �→0, which
for ��0 occurs via “spatio-temporal intermittency” �17�.

1.3 Viscous Shocks. Motivated by the observation in �16�
that for sufficiently large �, attracting shock-like odd solutions

such as that in Fig. 2 have been observed in L-periodic simula-
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ions of the partial differential equation �PDE� �2�, in the present
ork we concentrate on certain stationary solutions for ��0,
hich satisfy

uxxxx + �uxx + uux = �u �4�
he “tails” of these solutions are close to spatially linear solutions
ith slope �: indeed Eq. �4� has the exact solution u�x�=�x. The

hock-like interface arises when u is constrained to be periodic,
nd we shall see below that as L→�, the interface scales to a

ig. 1 „a… An odd bubble solution for the KS equation „�=0…
ith period L=128; „b… the „u ,ux… projection of another bubble
olution with more oscillations
Fig. 2 Odd viscous shock of period L=60 for �=0.4

ournal of Computational and Nonlinear Dynamics
jump for L−1u�Lx�; thus we refer to these solutions as viscous
shocks.

The origin of viscous shocks as L-periodic orbits in the four-
dimensional phase space associated with Eq. �4� is discussed at
some depth in Sec. 4: The emergence of viscous shocks is due to
a reinjection mechanism for ��0 by which certain heteroclinic
solutions become periodic. Precisely the same effect, but in a
much simpler context, occurs in the so-called Burgers-
Sivashinsky equation �18�, and for illustrative purposes we dis-
cuss it in some detail in Sec. 3.

In the limit of unbounded period, viscous shocks exist up to
�=0 and converge to fronts in the KS equation. As the integration
constant for the stationary KS equation becomes unbounded, the
aforementioned bubbles converge to the same fronts �9,10�. It
might thus seem natural that viscous shocks bifurcate from
bubbles as � increases from 0. In Sec. 5 we present numerical
evidence that viscous shocks for large � are indeed path con-
nected to bubbles in the �� ,L�-parameter space. However, it ap-
pears that for fixed period L, there is no connection in � from
�=0 to viscous shocks for large �; instead, as � decreases viscous
shocks either destabilize in a Hopf bifurcation or cease to exist at
a fold point at some ��0.

1.4 Viscous Shocks as a Source-Sink Compound. For the
PDE �2�, one may heuristically view viscous shocks as a robust
connection between a “source” at the center �zero intercept� of the
tail and a “sink” at the shock interface, because localized pertur-
bations between the two zero intercepts are transported towards
the shock interface, as indicated by the cartoon in Fig. 3�a�. In-
deed, the variation w=u−�x about the linear part in the profile

Fig. 3 „a… Schematic depiction of direction of transport of lo-
calized perturbations along the tail of a viscous shock. „b… Time
evolution of the dKS equation for L=60, �=0.5; initial condition
is a viscous shock with a small Gaussian perturbation near x
=4. Note the accelerated transport near the interface.
�choosing x=0 at the center of the linear tail� satisfies

OCTOBER 2006, Vol. 1 / 337



F
p
s
N
e
p
u
S
i
=
h
b
s

�
s
b
t
a
i
t
s
t
t

l
t
�
a
b
u
t
b
h
t
e
e
t
s
p

�
s
F
�
b
�
t
r
u
m
b
s
b
a
l

2

e

3

wt + �xwx = − �wxxxx + �wxx + wwx�

or small, smooth initial w�· ,0� localized near any x�0 we ex-
ect that the right-hand side of the above equation remains much
maller than �xwx due to smoothness, at least for a short time.
eglecting the right-hand side during this time, for ��0 the co-

fficient �x of the convection term is positive for positive x, im-
lying transport away from a “source” at x=0 where u=0,
x��, to the right for positive x and to the left for negative x.
ince the transport depends on the u elevation, one may interpret

t as a remnant of the Galilean invariance of the KS equation ��
0�. In fact, the characteristics of the hyperbolic part on the left-
and side are �t ,x0 e�t�, which implies a spreading of the pertur-
ations from the center and an accelerated transport towards the
hock interface.

This effect is observed in numerical simulations of the dKS Eq.
2�, such as that plotted in Fig. 3�b�, in which the �stable� viscous
hock for L=60, �=0.5 initially receives a small Gaussian pertur-
ation along the tail to the right of u=0. Note the direction of
ransport of perturbations of the linear tail, to the right for u�0
nd to the left for u�0, and the distinct acceleration nearing the
nterface as predicted; the final stationary state is a translation of
he original viscous shock. For smaller �, for which the viscous
hock is no longer an attractor, similar persistent wave transport
owards the �remnants of the� interface is characteristic of the
ransition to STC as � decreases to 0.

1.5 Scaling of Bounds on the Attractor. The existence of
arge amplitude viscous shock solutions is of particular interest in
he context of the scaling of rigorous bounds on the dKS attractor
see Refs. �16,19� for discussions�. All numerically computed or
nalytically approximated known solutions of the KS Eq. �1� on
ounded domains of length L appear to have amplitude �u�x , t��
niformly bounded independent of L; but while partial proofs of
his are known, notably the result of Michelson �9� of a uniform
ound for all stationary solutions, a general L� bound for Eq. �1�
as remained elusive. Analytical estimates typically proceed via
he L2 norm, defined by the energy �u�2

2=�0
Lu2dx; uniform bound-

dness of u would imply lim supt→� �u�2�CL1/2, or that the en-
rgy density is finite. This scaling appears natural in the spatio-
emporally chaotic KS limit, as it is consistent with decay of
patial correlations and extensivity, that is, local dynamics inde-
endent of system size and unaffected by distant boundaries.

The asymptotic scaling of the viscous shock solutions of Eq.
2�, as observed numerically �16� and shown in Sec. 4 below,
hows that the dKS equation does not have extensive dynamics:
or any ��0, as the period L→� the L� and L2 norms scale as
u��=O��L�, �u�2=O��L3/2�, which implies that the best possible
ound on the KS absorbing ball using a method valid also for �
0 should be lim supt→� �u�2�CL3/2. By an improved construc-

ion of the gauge function 	, Bronski and Gambill �19� have
ecently shown that the exponent 3 /2 can indeed be achieved
sing a Lyapunov-type argument to proving bounds, and is opti-
al for such an approach. Thus for the dKS equation we have the

ound lim supt→� �u�2�C���L3/2, and the viscous shock solution
aturates the bound. �The best current estimate for the absorbing
all of the KS equation for �=0 is lim supt→� �u�2=o�L3/2�, using
method, inapplicable for ��0, of treating the KS solution at

arge scales like an entropy solution of Burgers’ equation �20��.

Phase Space Formulation for Stationary Solutions
In preparation for studying the stationary solutions of the dKS

quation, we rewrite Eq. �4� as a first-order system:

ux = u1

u1,x = u2
u2,x = u3

38 / Vol. 1, OCTOBER 2006
u3,x = − �u2 − uu1 + �u �5�

or, more briefly, Ux=F�U ;��, where we denote
U= �U0 ,U1 ,U2 ,U3�= �u ,u1 ,u2 ,u3�. The system �5� is measure
preserving, because the trace of its linearization vanishes. The odd
symmetry u→−u, x→−x of Eq. �4� yields the reversible symme-
try of Eq. �5� with respect to the reflection R�u ,u1 ,u2 ,u3�
= �−u ,u1 ,−u2 ,u3�, which has the symmetry plane
SR= 	�0,a ,0 ,b� �a ,b�R
, orthogonal to the flow. We refer to
solutions that are symmetric with respect to the reflection as
reversible.

The single odd linear solution �x of Eq. �4� plays an important
role, and we view it as an invariant reversible one-dimensional
manifold ��= 	�a ,� ,0 ,0� �a�R
 in the phase space of Eq. �5�;
note that �0 is a line of equilibria.

In anticipation of the stability considerations in Sec. 5, we in-
troduce the linearization of Eq. �2� about a solution u�x�,

L�u�v = vxxxx + �vxx + vux + uvx − �v �6�

The eigenvalue problem �v+L�u�v=0 with appropriate boundary
conditions �possibly at infinity� determines the spectrum of L�u�
�also referred to as the spectrum of u� for the PDE �2� and thereby
the stability of a stationary solution u. We recast this eigenvalue
problem as a first-order linear non-autonomous ODE of the form
Vx=B�x ;��V, where B�x ;��=A�u�x� ,ux�x� ,�� with

A�u,u1,�� ª �UF�U;�� − ��
0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0
�

=�
0 1 0 0

0 0 1 0

0 0 0 1

� − u1 − � − u − � 0
� �7�

Note that for �=0 this is the linearization of the spatial dynamics
�5� in u.

For ��0 the unique spatially uniform steady state u�x�=0 of
Eq. �2� corresponds to the unique equilibrium U= �0,0 ,0 ,0� in
Eq. �5�. The eigenvalues of the linearization A�0,0 ,0� about the
trivial state are

±
±��� = ±−
�

2
±�2

4
+ �

whose real and imaginary parts are monotone functions of �. In

particular, 
−�0�=�i, 
+�0�=0, and for �=2 we have 
±�−1�=i.
Hence, for �=2, as � varies from 0 to −1 all resonances occur,
which has consequences for the bifurcation of periodic orbits �10�.

However, our interest is the destabilized regime ��0, where
the aforementioned viscous shocks shown in Fig. 2 were found. In
this regime, A�0,0 ,0� has a pair of complex conjugate pure imagi-
nary eigenvalues and two non-vanishing real eigenvalues with
same absolute value but opposite signs. Hence, using Devaney’s
reversible Lyapunov center theorem for reversible equilibria �21�
�Theorem 8.1� and the formulas for 
±���, we can immediately
deduce the existence of a family of periodic orbits in a manifold
tangent to the center eigenspace: For any ��0 and ��0, system
Eq. �5� possesses a two-dimensional invariant manifold containing
the origin which consists of a nested one-parameter family of
reversible periodic solutions, whose period tends to 2� / �
−���� as
the initial condition approaches the origin.

These symmetric periodic orbits, similar to Turing patterns, are
roll �or cellular� solutions, which a priori have small amplitude,
but numerically continue to solutions with relatively large ampli-

tude; examples of such patterns �with fixed period L and varying

Transactions of the ASME
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� are shown in Fig. 12 below. The wavelength of these stationary
atterns is set by the condition �=0, where the spectrum �3� of the
rivial solution u�0 crosses the imaginary axis at non-zero wave
umber k2=� /2+�2 /4+�.

Burgers-Sivashinsky Equation
To illustrate the phase space analysis for the investigation of

teady states of Eq. �2� and for comparison, we consider the sim-
ler destabilized Burgers or so-called “Burgers-Sivashinsky”
B-S� equation �18,19�

ut − uxx + uux = �u �8�

or ��0, this equation has similar viscous shock-like solutions,
onsisting of an outer linear solution and a steep inner transition
ayer which is near a heteroclinic connection.

The first-order system for stationary solutions of Eq. �8� is

ux = u1

u1,x = uu1 − �u �9�

his system is reversible with symmetry line mR= 	u=0
, and has
he same linear solution u=�x as Eq. �4�, whose orbit in Eq. �9�
e denote by �� as well. Since the phase space is only two di-
ensional, the analysis is simple, and we can give a complete

haracterization of stationary solutions. We first show that for
�0 there are no non-trivial periodic solutions, and then consider
�0.
For ��0, elementary phase plane analysis shows that the

nique equilibrium at the origin u=0 is the only bounded station-
ry solution of Eq. �8� �see Fig. 4�a��. For �=0, the line
0= 	u1=0
 consists of fixed points which we denote by u= ±c,
�0. Orbits in the half-plane u1�0 are unbounded, but the re-
ion u1�0 is fibered by spatially heteroclinic odd orbits hc�x�, as
hown in Fig. 4�b�. These are the only non-trivial bounded sta-
ionary solutions and satisfy hc,x=1/2�hc

2−c2�, hc��� �= ±c.
hoosing the spatial origin so that hc�0�=0, we find
=−2hc,x�0�, and hence upon integration the explicit formula

c�x�=−c tanh�cx /2�.

3.1 Viscous Shocks in the B-S Equation. We may summa-
ize the behavior for ��0 as follows:

THEOREM 1. For any ��0 the flow of Eq. �9� maps
R� 	u1�0
 to mR� 	0�u1��
 reversing the order of the u1

omponent. The nontrivial, bounded stationary solutions of Eq.
8� are given by a one-parameter family uc�x� of nested spatially
eriodic odd solutions, parametrized by c=−2uc,x�0��R+. Let-
ing L=L�� ,c� be the period of such a solution, the slope ux=u1



Fig. 4 Phase portraits for stationary solutions of the Burge
ncreases monotonically for x� �0,L /2�, and L→2� / � as

ournal of Computational and Nonlinear Dynamics
c→0. As c→�, for fixed x the solutions uc�x� converge locally
uniformly to hc�x�, and uc�·+L /2� converge locally uniformly to
��. In this limit, we can estimate the period as L=2c /��1
+o�1�c→��, the amplitude as �L+o�1�c→��2 max	u�x� �x
� �0,L�
��L, and uc,x�L /2�=�+O�e−c2/2��c→�.

Proof. We prove the above statements by using reversibility and
phase space methods to identify the periodic solutions, emphasiz-
ing a readily generalized geometric approach; the corresponding
phase portrait for �=1 is shown in Fig. 4�c�.

For ��0, the unique fixed point is again at the origin �u ,u1�
= �0,0�. The invariant line �� and the region above it contain no
bounded solutions, since for ux=u1��, u is monotonically
increasing.

We parametrize the solutions Uc=U�x�= �u ,u1� of Eq. �9� be-
low �� by c�0, so that U�0�= �0,−c2 /2� is the initial condition
on the symmetry line mR� 	u1�0
. For small positive x, U enters
the sector 	u�0,u1�0
. By Eq. �9� u is decreasing, and u1 in-
creasing in this sector, so that the orbit U must intersect 	u1=0
 at
u=−u*�c ,��, x=x1 �with u*�0� to enter the sector A= 	u�0,
0�u1��
, remaining entirely below the invariant line ��. Since
u and u1 are increasing in A, we deduce that U must intersect the
symmetry line mR for u1�0 at some x*=x*�c ,��. Since ux=u1

�� in region A, we have u�x��−u*+��x−x1� in this region, so
that the “time” to traverse this region is x*−x1�u* /�. By revers-
ibility, we conclude that U is a closed orbit of period 2x*=L
=L�c ,��. Hence the phase plane below �� is fibered by reversible
periodic orbits, for which more negative u1�0�=−c2 /2 are mapped
to larger u�x*�=u�L /2�, that is, closer to ��, and u1=ux increases
monotonically for x� �0,L /2�.

The eigenvalues of the linearization of Eq. �9� about the trivial
solution �0,0� are ±�i, which immediately implies the period in
the limit c→0+ of small-amplitude oscillations.

The large-amplitude limit of stationary solutions of long period
may be studied by rescaling with a scale parameter �0: setting
x=y, v=u, the function v�y� satisfies Eq. �9� with � replaced by
2�, and with vy�0�=−�c�2 /2=−c̃2 /2. Thus for fixed
vy�0��0, the convergence of v�y� to the heteroclinic
hc̃ as →0 is apparent. Since c=−1−2vy�0�, this corresponds
for u�x� to the limit c→�, in which u converges to the hetero-
clinic hc=−c tanh�cx /2�. Since hc���=−c, to leading order the
amplitude and period are found from u*�c and x*�L /2�c /�,
so u*��L /2 �note that the contribution to the period from the
heteroclinic is lower order, x1 /x*=o�1�c→��.

The behavior near �� is best analyzed by moving the spatial
origin to the intersection mR� 	u1�0
, and considering the varia-

Sivashinsky system „9… for „a… �=−1, „b… �=0, and „c… �=1
rs-
tion about �� via w�x�=�x−u�L /2+x�, so that w�0�=0,

OCTOBER 2006, Vol. 1 / 339
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x�0�=�−u1�L /2��0. Then �by reversibility� the repulsion rate
f wx from wx�0� as x increases corresponds to the attraction of u
o �� in region A. The solution w satisfies wxx−�xwx=−wwx,
hich we integrate via variation of constants to

wx�x� = wx�0�e�x2/2 −�
0

x

e��x2−s2�/2w�s�wx�s�ds

ence on a linear level, neglecting the last term, the growth of wx
n x, and hence the attraction of ��� 	u�0
 in the transverse
irection in �x−L /2�, is super exponential. Since the “time” that u
pends in A �until wx=�� is x*−x1=c /�+o�1�c→�, we find

x�0�=O�e−��x*−x1�2/2�=O�e−c2/2��, so the midpoint slope, at the

ntercept with mR� 	u1�0
, is ux=�+O�e−c2/2��c→� �

In this particular two-dimensional system, we may confirm
he above conclusions directly from the first integral u1
� log ��−u1 �−u2 /2=K, where K=−c2 /2+� log ��1+c2 /2�� for

he solution through �0,−c2 /2�. Writing w1=1−u1 /� this be-
omes w1−log w1+u2 /2�=1+ c2� 2� −log�1+c2 /2��. Straight-
orward expansions for c2 /2��1 show that the intercepts with

R are at w1=1+c2 /2� �that is, u1=−c2 /2�, and u1=��1−w1
*� for

1
*= �1+c2 /2��e−�1+c2/2��+O��w1

*�2�; and that the maximum value
f �u� �at u1=0� is u*=maxx �u � =c�1−� /c2 log c2 /2�+O�c−4��. In

act, we have w1e−w1 = �1+c2 /2��e−1+�u2−c2�/2�, so for small �u�,

1�w1
*eu2/2�. Since near x=L /2, u���x−L /2�, we have

1�e��x−L/2�2/2, verifying the super-exponential growth.
Remark. Many of the results about the stationary solutions of

q. �8� are contained in Ref. �18�, where the argument proceeds
ia matched asymptotics. The purpose here is to illustrate the
pproach by phase space analysis and the role of �� in organizing
he “viscous shocks” of Eq. �8� for ��0 only.

We emphasize that these bounded solutions, which are similar
o the viscous shocks in Eq. �2�, do not oscillate in space. A
ypical such orbit for �=1 is shown in Fig. 5. In Sec. 4 we show
hat the viscous shocks for the four-dimensional ODE �5� arise
ue to a similar phase space geometry, but oscillate near ��.
Goodman �18� investigated stability in the B-S equation, and in

articular argued that Eq. �8� in the space of periodic mean zero
olutions has a gradient structure, which excludes temporal oscil-
ations and chaotic behavior; and that the stable stationary solu-
ions are those whose minimal period is the domain length.

For the dKS Eq. �2�, both the stability and the classification of
teady states are more complicated, and we present numerical
esults for the bifurcations and spectrum of viscous shocks in Sec.
. Indeed, the linearization of Eq. �8� in a viscous shock has a real
pectrum, while some viscous shocks in Eq. �2� undergo Hopf

ig. 5 Profile of a “viscous shock” of the Burgers-Sivashinsky
q. „8… with �=1
ifurcations as � is varied.

40 / Vol. 1, OCTOBER 2006
4 Existence of Viscous Shocks
By comparison with the B-S Eq. �8�, the detection of viscous

shocks in the dKS equation is more challenging due to the four-
dimensional phase space of Eq. �5�. However, the structural simi-
larity is that both equations produce heteroclinic connections in a
rescaled limit, and that the flow along the special solution �x
provides a re-injection mechanism that perturbs these heteroclinic
orbits to periodic ones. The viscous shock solutions are thus con-
structed as periodic orbits in Eq. �4� by patching together a per-
turbed heteroclinic orbit with a trajectory near the invariant line
��.

4.1 Heteroclinic Orbits. We work in coordinates appropriate
to the heteroclinic connections. To blow up the inner layer of
viscous shocks, we thus rescale Eq. �2� via x=y and balance by
u=−3v, which upon multiplication with 7 yields

vyyyy + vvy = 2�− �vyy + 2�v� �10�
We consider Eq. �10� in its first-order formulation

vy = v1

v1,y = v2

v2,y = v3

v3,y = − vv1 − 2�v2 + 4�v �11�

which has the same reversible symmetry R as Eq. �5�, reflection
about the symmetry plane SR, and the invariant line in these co-
ordinates is �4�= 	�a ,4� ,0 ,0� �a�R
.

We begin by studying the unperturbed heteroclinic orbits: For
=0 Eq. �10� is the integrable equation

vyyyy +
1

2
�v2�y = 0 �12�

or vyyy +v2 /2=c2 /2, where c is a constant �nontrivial bounded
solutions are found only for positive integration constant�. In this
case, rescaling via v=cw and z= �c /2�1/3y yields

wzzz = 1 − w2 �13�

Apart from the hyperbolic fixed points at w±= ±1, this equation
has a unique �up to translation� bounded solution, the heteroclinic
orbit h�z� �22�. This orbit lies in the transverse intersection of the
two-dimensional stable and unstable manifolds of the equilibria
w−=−1 and w+= +1, respectively, and intersects the symmetry
plane w=wzz=0 with negative slope wz. We can choose the origin
z=0 so that h is a reversible orbit, with h�±� �= �1,
h�0�=hzz�0�=0, and hz�0��0; and we define the amplitude of the
heteroclinic orbit hmax= �h��=maxz�R �h�z� � �1.

Returning to the limiting inner Eq. �12�, we thus obtain a one-
parameter family of reversible heteroclinic orbits
hc�y�=ch��c /2�1/3y�, which connect the equilibria ±c; note that
hc,yyy�0�=c2 /2hyyy�0�=c2 /2. Let Hc= �hc ,hc,y ,hc,yy ,hc,yyy� denote
the solution of the first-order system associated with Eq. �12�.
Then Hc lies in the transverse intersection of the stable and un-
stable manifolds Ws�−c�, Wu�c� of ±c �9,22�. The unique inter-
section of the heteroclinic orbit Hc with the symmetry plane SR is
at z=0, with Hc�0�= �0,a�c� ,0 ,c2 /2��SR, where
a�c�= �c4 /2�1/3hz�0��0 for all c�0; observe that a�c�→−� as
c→�, and that the amplitude is maxy hc�y�=chmax.

4.2 Invariant Line. Having discussed the unperturbed hetero-
clinic orbit, we next characterize the invariant line �4� in the
rescaled coordinates: The invariant manifold �4� \ 	�0,4� ,0 ,0�

of �11� is normally hyperbolic, that is, the three-dimensional
transverse linear flow near �4� is hyperbolic away from the sym-
metry plane SR. For each v�0, the eigenspaces of the lineariza-

tion of the transverse flow are transverse to the v direction, with
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he transverse eigenvalues consisting of one real unstable eigen-
alue and a stable complex conjugate pair of eigenvalues. More-
ver, for v�0 and any �0, the unstable eigenvalue is strictly
onotone increasing as v decreases, and the real parts of the

table eigenvalues, which are the leading eigenvalues, are strictly
onotone decreasing.
We prove this by linearizing Eq. �11� about v1=4�, v2=v3

0 at a fixed v, to find that the linearized matrix A�v ,v1 ,0� from
q. �7� takes the �-independent form

A�v�: =�
0 1 0 0

0 0 1 0

0 0 0 1

0 − v − �2 0
�

hose characteristic polynomial is 
�
3+v+�2
�. In addition to
he eigenvalue 
=0, corresponding to the flow along the invariant
ine, we have three transverse eigenvalues 
 j�v�, j=0,1 ,2. For
2=0, these eigenvalues are straightforwardly found as 
 j�v�
�−v�1/3 e2�ij/3, while for �2�0, the roots of the cubic are found
sing Vieta’s substitution 
=w−�2 / �3w�, where w3=g satisfies
2+vg− ��2 /3�3=0; we obtain


 j�v� = e2�ij/3g1/3 − 2e−2�ij/3 �

3g1/3 �14�

here g�R is

g = −
v
2

+v2

4
+ 6 �3

27
� 0

e observe that 
0�R, and that sgn�
0�=−sgn�v� �since for
2�0, we compute 
0�0 if and only if g2� ��2 /3�3, which

rom the governing quadratic equation for g�0 holds if and only
f v�0�. The monotonicity of 
0 in v is obvious for �2=0, and
therwise follows from dg /dv�0 and d
0 /dg�0.
The remaining eigenvalues 
 j�v�, j=1,2 are complex conju-

ate, with real part Re�
 j�=−
0 /2, from which the stability and
onotonicity of the complex eigenvalues follows. Therefore �4�

s normally hyperbolic, but not uniformly, because at SR��4�

�0,4� ,0 ,0� all eigenvalues lie on the imaginary axis. Since the
igenvalues are distinct, eigenspaces are transverse to each other
nd the v direction is the kernel.

4.3 Phase Space Origins of Viscous Shock. Having estab-
ished the properties of the invariant line and the heteroclinic con-
ections, as for the B-S Eq. �9� we can locate viscous shocks as
rajectories of Eq. �11� beginning in the symmetry plane SR which
rack an unperturbed heteroclinic orbit into the vicinity of the
nvariant line �4�, and are then transported by the flow along this
ine back into the symmetry plane. However, the analysis is more
ubtle in this case owing to the higher dimensionality, and as
iscussed below, we expect that a blow-up analysis will be re-
uired to make the following arguments fully rigorous. To ensure
roximity to the heteroclinic solutions of Eq. �12�, the construc-
ion depends on suitable smallness conditions on both 4� and
2�, which may be combined in a single perturbation parameter,
or instance, 2�+4�. However, for the sake of clarity we con-
ider fixed, though arbitrary, values ��0 and ��0, and take  as
he perturbation parameter; we observe that all constructed trajec-
ories and manifolds depend smoothly on �, � and . For ease of
otation we do not distinguish between constants K�0, which
ay be chosen successively smaller.
Let �y�U� denote the flow of Eq. �11�. Taking initial data
�SR in the symmetry plane, we let O±�U�= 	�y�U� � y
R± , �y � �min	�y � �0 � �y�U��SR

 represent the partial for-
ard or backward orbit under the flow before the next intersection
ith SR= 	v=0,v2=0
. Using reversibility we identify periodic

˜
olutions, with period L in y, as orbits beginning in SR, which
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again intersect SR at y= L̃ /2.
First we observe that there are orbits beginning in SR which

closely track an unperturbed heteroclinic orbit and are attracted
arbitrarily closely to the invariant line �4�. Indeed, consider a
compact subinterval �4�

c1,c2 = 	�v ,4� ,0 ,0� �−c1�v�−c2�0
 of

�4�. By our previous calculations the interval of equilibria �0
c1,c2

is normally hyperbolic with combined rate �1=Re�
1�−c2���0,
since the real parts of the eigenvalues are monotonic in v. By
Fenichel theory �23�, �Theorem 9.1�, the stable and unstable mani-
folds are preserved under perturbation, so that there is a K�0
such that whenever 0��K, the orbit segment �4�

c1,c2 has locally
�in y� stable and unstable manifolds W

s/u such that any orbit de-
cays towards or diverges from �4�

c1,c2 with rate at least �1 /2, as
long as it stays in these manifolds. �In fact, as for the B-S equation
we observe that for a viscous shock solution, the attraction to-

wards �4� is super exponential in y− L̃ /2.�
We recall that for =0 we have a one-parameter family of

heteroclinic orbits Hc, so that the stable manifold of �0
c1,c2 trans-

versely intersects SR with negative v1 component in a curve H,
and an initial condition Hc�0�= �0,a�c� ,0 ,c2 /2� in H approaches
the equilibrium at Uc,0

− = �−c ,0 ,0 ,0� for some c�0 in an oscilla-
tory manner.

The stable manifold W
s converges locally uniformly as →0

to the stable manifold of �0
c1,c2, and the decay in the stable fibers is

exponential, while the distance of the invariant line to the v axis is
4�, polynomial in . Hence for sufficiently small K�0, for
0��K the local stable manifold W

s intersects SR in a curve
H, which converges uniformly to a compact subset of H as
→0. Let Vc,�0��SR be an initial condition in H which ap-
proaches Hc�0� as →0 for some c, −c1�−c�−c2. Then the
trajectory Vc,=O+�Vc,�0�� approaches a neighborhood of Uc,

−

= �−c ,4� ,0 ,0�, and thus in particular attains a positive v1 com-
ponent. The flow proceeds in the direction of increasing v, and
since it maps stable fibers to stable fibers, such a trajectory re-
mains in the stable manifold W

s , retaining a strictly positive v1
component and exponentially approaching the invariant line �4�.
By continuity �possibly for smaller K�0� for any 0��K, such
an orbit crosses the section 	v=0,v1�0
.

We thus now have, for a given sufficiently small �0, a one-
parameter family of trajectories Vc,, smoothly parametrized by c,
which are initially perturbations of a family of heteroclinic orbits
Hc, are attracted to the vicinity of the invariant line �4�, and then
flow in the direction of increasing v until they cross the hyper-
plane 	v=0
, as indicated schematically in Fig. 6. To locate a
reversible periodic orbit, we now make use of the additional free-
dom in c to obtain an intersection with the symmetry plane SR. Let
b�c� be the value of v2 at the intersection of Vc, with the hyper-

Fig. 6 Sketch of the phase space projected into the „v ,v1…

plane for �>0; note that the v1 axis lies in SR. The dashed line is
the heteroclinic Hc for �=0.
plane 	v=0
; then we require b�c�=0 �this requirement, due to
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he higher dimensionality of the phase space of Eq. �11�, is part of
he reason for the additional complexity not present in the two-
imensional B-S problem�.

One may argue as follows: the invariant line �4� lies in the
lane 	v2=0,v3=0
. By our previous computations, the transverse
ow in the local stable manifold is exponentially attracted to �4�

c1,c2

in fact, for increasing c the trajectory Vc, spends longer in the
table fibration, and thus approaches the origin in �v2 ,v3� more
losely�. Furthermore, the transverse flow is an oscillation, so that
he v2-v3 projection oscillates in y, hence as a function of distance
long �4�. Since the distance traveled along �4� increases with c,
e expect that b�c� oscillates about v2=0 as a function of c;

onsequently for sufficiently small , there is a c*=c*� ,� ,�� so
hat b�c*�=0. This gives us the desired reversible periodic orbit.
y construction, this orbit is initially near an unperturbed hetero-
linic, and is then exponentially attracted to the invariant line �4�,
here v1� constant; so this corresponds to a viscous shock solu-

ion, as in Fig. 7. This viscous shock Vc*,�y� in the rescaled vari-
bles �corresponding to a viscous shock Uc*,�x� in the original
ariables� depends smoothly on the parameters , �, and �.
We may further verify this phase space picture by looking at the

eometry of the intersection of a branch of viscous shocks, ob-
ained by fixing c*� ,� ,��, with the symmetry plane SR. For in-
tance, for fixed ��0 and ��0, decreasing  increases the length

f the flow along �4�, and thus increases the period L̃, or L in the
riginal variables �see the discussion on scaling below�. Since the
ransverse flow in the stable manifold of �4� is an oscillation and
ontraction as a function of distance traveled, we expect the inter-
ection with SR to spiral in towards v1=4� �that is, u1=��,
3=0 with decreasing  �or increasing L�; this prediction is veri-
ed in Fig. 8�a�.
Numerically, one can most easily locate viscous shocks as at-

racting stationary solutions of the dKS Eq. �2� for sufficiently

ig. 7 Phase space projections of the viscous shock from Fig.
onto the planes „a… „u ,u1… and „b… „u ,u2…
arge � and L; however, one can also obtain good approximations
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by a shooting method in Eq. �5� �in the original variables u�x��. In
this case, it is convenient to reverse the above construction, by
starting in SR near ux=� and trying to hit SR= 	�u ,uxx�= �0,0�

again, since by reversibility such an intersection corresponds to a
periodic solution. In Fig. 8�b� we plot the results of such a shoot-
ing approach for �=0.4, in which we varied the initial u1=ux and
considered the projection of the resulting orbits in the �u ,u2�
plane. Observe that at the intersection with u=0, trajectories A
and C indeed lie on either side of the origin uxx=0, which con-
firms the existence of a periodic solution �near trajectory B�. Note
how the presence of an unstable manifold of �� leads to extreme
sensitivity to the initial ux value.

Remark. The above existence argument for the dKS viscous
shocks is not rigorous in its present form, as we only have normal
hyperbolicity of the invariant line �4� for v�0, not at the inter-
section with the symmetry plane SR. Thus we are not a priori
guaranteed the desired smoothness of and rates of attraction
within the stable manifold W

s uniformly up to SR. �Furthermore,
the presence of a two-dimensional transverse unstable manifold
W

u of �4�
c1,c2—also not present in the B-S equation—implies that

great care is needed with continuity arguments based on perturb-
ing the orbits constructed above.�

We expect that by a so-called blow-up analysis it is possible to
rigorously prove the existence of viscous shocks and related solu-
tions, as well as their scaling in terms of � and L as discussed

Fig. 8 „a… Intersections of viscous shocks with SR for fixed �
É0.3435 parametrized by L« „40,62…. „b… Projections to the
„u ,uxx… plane of trajectories of Eq. „5… with �=0.4 and initial
conditions u=uxx=uxxx=0, and A: ux=0.3999999991 B: ux
=0.39999999915 C: ux=0.3999999992.
below. The blow-up approach to a non-hyperbolic equilibrium
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ith nilpotent part is a change to spherical coordinates together
ith a desingularization that renders the non-hyperbolic equilib-

ium a sphere with several hyperbolic equilibria and heteroclinic
onnections that can be treated classically. It has been used suc-
essfully in low ambient dimensions for singularly perturbed
roblems where the slow manifold is folded at a non-hyperbolic
oint and transitions between opposing parts produce special so-
utions; straightening such a one-dimensional fold, one obtains a
ine of equilibria similar to �0 �see, for instance, Ref. �24��.

4.4 Scaling of Viscous Shocks. The constructed viscous
hock solutions Vc*,�y� approach the vicinity of the invariant line
ear v=−c*, and then proceed towards SR with speed v1�4�,
hich occurs along a y interval of length �c* /4�. The leading-

rder estimate of the period in y is thus L̃�2c* /4�, while as
→0, the contribution from the flow near the heteroclinic Hc*

is
f lower order, O�1� in y.
The intersections with the symmetry plane SR occur for

1�4� �with, presumably, exponentially small corrections, as
or the B-S equation� along the “linear” part of the viscous shock,
nd v1�a�c*�= �c*

4 /2�1/3hz�0��0 in the transition layer region.
he amplitude of the shock is maxy�R �v � �c*hmax+o�1�→0,
hich is slightly greater than c*, the overshoot being due to the
eteroclinic orbit.

We hence deduce the scaling of the viscous shock solutions in
he original variables, x=y and u=−3v. The period L along a
ranch of viscous shocks �with a particular c*� satisfies

=L� ,� ,��=L̃� ·2c* /4�. Treating the period L as a param-
ter �which is appropriate as we frequently seek solutions of the
DE on a domain with a given period�, and solving for
=�L ,� ,����2c* /�L�1/3, we observe that each branch of vis-
ous shock solutions is a smooth three-dimensional manifold pa-
ametrized by L, �, and �.

The transition layer width due to the heteroclinic, which is O�1�
n y, is O��=O���L�−1/3� in the original x variable, as predicted
nd observed numerically in Ref. �16� and used for the gauge
unction construction in Ref. �19�. Further, since u1=ux=−4vy,
he intersections with the symmetry plane SR occur with slope
x�� in the outer, linear regime �corresponding to the dominant
alance uux��u in Eq. �4�� and ux���L /4�4/3hz�0� in the center

f the viscous shock. Last, the amplitude is �u���
hmax

2 �L, while
he leading contribution to the L2 norm is due to the outer, linear
art, giving �u�2

2��2L3 /12, thus confirming the scaling results for
u�� and �u�2 discussed previously.

The existence criterion for these viscous shocks from our ap-
roach is �for fixed ��0� a smallness condition on . Since for
→0, =O���L�−1/3�, we thus have that

there exists a constant K* such that viscous shocks
exists for �L�K*

The requirement that �4 be sufficiently small leads to an addi-

ional criterion that �L4 be large enough, �L4� K̃*, say, which
ecomes relevant for short-period solutions with large �.� While
e have only shown this criterion to be sufficient �not necessary�,
e thus suspect that the viscous shocks do not bifurcate from �
0, that is, from solutions of the KS Eq. �1� with finite period, and

his is shown numerically in Sec. 5 below.

Numerical Continuation, Stability and Related Solu-
ions

For sufficiently large �L, the above argument indicates that
iscous shocks exist, and indeed they are numerically observed to
e attracting �16�. Towards seeking to understand the nature of
nd transitions towards spatio-temporal chaos in the KS Eq. �1�, it
s of interest to investigate what happens to the viscous shocks as
decreases towards the KS limit �=0. In this limit, we know the
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viscous shocks cease to exist, both by our arguments in Sec. 4 and
from the fact that the amplitude of the viscous shocks is propor-
tional to L, while that of stationary KS solutions is uniformly
bounded �9� in L; but one might surmise that they are connected
in parameter space to some interesting KS solutions. This idea is
particularly attractive as the inner layers �in the limit of infinite
period L� of viscous shocks in the dKS equation and of fronts in
the KS equation are the same, being the heteroclinic connections
of Eq. �12� �see �9�, Theorem 2.2�. It turns out, however, that
while viscous shocks are path connected to the KS equation in the
�� ,L�-parameter plane, there is no direct path connection for fixed
� or fixed L.

The full dynamics and bifurcations of the dKS equation in the
�→0 limit are complicated, and we merely summarize here our
preliminary investigations of the very restricted case of reversible,
stationary solutions. We concentrate on solutions to the boundary-
value problem for the system �5� �with �=2� with boundary con-
ditions u=u2=0 at x=0,L /2, which by reversibility are L-periodic
stationary solutions of the dKS Eq. �2�. We continue these solu-
tions in the parameters � and L using the software package AUTO

�25�; the highly accurate numerical method is of predictor-
corrector type, incorporating a Newton method and spatial dis-
cretization by collocation.

Our main observation is the following: It appears that for any
fixed period L, the continuation of a branch of viscous shocks for
decreasing � undergoes a fold at some �*�L��0; the same holds
when � is held fixed and L decreased. The continuation of the set
of folds of viscous shocks 	��*�L� ,L�
�R2 consists of bounded
disconnected curves along which the nature of the solutions
changes. These curves terminate in cusps at some ��0 and roll
solutions for some ��0, while at �=0 the solution is a bubble.

This observation, consistent with the sufficient �though not nec-
essary� existence criterion for viscous shocks, is supported by the
numerical results shown in the figures and discussed below. We
plot a typical continuation branch of viscous shocks for fixed pe-
riod L=60 in Fig. 9�a�; with decreasing � the branch experiences
a fold, or saddle node bifurcation, at some ��0. In fact, there are
regions in the �� ,L� plane where many more sheets of stationary
solutions coexist, and we plot some such branches in Fig. 9�b�.

5.1 Reversible Solutions of the dKS Equation. Several dif-
ferent families of reversible periodic solutions are observed along
the branches of Fig. 9 and similar bifurcation curves; the main
types are shown in Figs. 10–12 �note that by reversibility, we need
to show only half of the solution�. Since most of these solutions
have interfaces similar to that of viscous shocks, we propose a
classification of these in terms of the geometry of their tails away
from the shock interface:

• Viscous shocks: Solutions with the slope of tail near
ux��; see two examples in Fig. 10. This family incor-
porates the viscous shocks for large �L discussed in Sec.
4, and solutions obtained from these by continuing in the
�� ,L�-parameter plane without passing a fold.

• Flat shocks: These solutions have a shock-like interface
similar to that of viscous shocks, and a nearly vanishing
slope in the tail �with decaying oscillations�; see Fig.
11�a�. Flat shocks come in a family parametrized by the
length of the flat region and the length of the region near
��.

• Roll shocks: The oscillatory tails of these solutions are
reminiscent of the roll solutions �Turing-like patterns�,
while their interface is similar to that of viscous shocks;
see Fig. 11�b�. The family of roll shocks is parametrized
by the length of the region near a roll pattern, and the
amplitude and period of these, as well as by the length of
the linear region near ��. �These are not the oscillatory
shocks of the KS Eq. �1�, whose interfaces, not tails,

oscillate �14,15�.�
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ther solutions observed include the previously discussed roll so-
utions �parametrized by their amplitude and wave number, which
imits to �
−� for small amplitude; see Fig. 12� and bubbles as in
ig. 1.
Regarding the existence of flat and roll shocks, we conjecture

he following: Flat and roll shocks can be constructed similarly to
iscous shocks by following the heteroclinic orbits Hc and the
einjection provided by ��, but leaving the vicinity of �� in its
nstable direction: Roll shocks occur near an intersection of the
ocal unstable manifold of �� for u�0 and the stable manifold of
he roll solutions discussed in Sec. 2; they start in SR near H, but
ventually follow the unstable fiber and remain near the roll for a
hile before intersecting SR again. Similarly, flat shocks are near
n intersection of the unstable manifold of �� and the stable mani-
old of the origin.

The solutions plotted in Figs. 10 and 11 support this conjecture:
hese solutions may have an extended region near ��, but diverge
rom it before u reaches zero away from the shock interface, and
pproach either a roll solution or the origin.

5.2 Folds of Viscous Shocks. For sufficiently large �L, we
ave seen that �for �=2� there exists a two-parameter family of
iscous shocks; we now consider the boundary of this sheet of
iscous shocks in �� ,L� parameter space. As mentioned above, for
ypical fixed period this boundary is a fold, and we plot in Fig. 13
he numerical continuation of several such folds in the �� ,L�
lane. The nature of the solutions along these folds changes with
, eventually terminating in roll solutions for ��0, while for
�0 the corners of these curves are cusps, where two folds meet.
ote that only the components of the fold curves intersecting
=0 are relevant to viscous shocks, while beyond the cusps for
�0, the observed folds are the boundaries of sheets of flat

ig. 9 „a… Paths of reversible periodic orbits of period L=60,
ontinuing in �; labeled solutions are shown in Figs. 10–12. „b…
section through several sheets of shocks for L=60. The up-

er branch is one of viscous shocks, while the shocks on
ranches with lower amplitude have a longer flat region.
hocks.
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The intersection of these fold curves with �=0 shows the path
connectedness of dKS viscous shocks and certain bubbles of the
KS equation, but in all our computations the branch of a fold at
�=0 does not connect directly to the sheet of viscous shocks for
fixed L. Instead, it connects to rolls at ��0 via flat and roll
shocks. This can be partially understood by the points with hori-
zontal slope in the graph of Fig. 13, for example, at the dashed
horizontal line: above the dashed line the fold of viscous shocks is
the rightmost one, but below the dashed line it is the leftmost one.
Indeed, at the degenerate fold where the curve has vanishing
slope, the sheet of viscous shocks touches a sheet of flat shocks
and “rips” for increasing period, thus producing another curve of
folds. We illustrate this ripping process in Fig. 14, by showing
various cross sections at constant L of surfaces of reversible sta-
tionary solutions of the dKS equation; in each case solution “A” is
connected �for large � and L� to the sheet of viscous shocks, while
“B” and “C” connect to flat shocks for increasing �.

Observe the upper envelope of the folds in Fig. 13 �approxi-
mately sketched by the thick dotted curve�: above and to the right
of the envelope—which appears to have the form of a
hyperbola—viscous shocks are guaranteed to exist, consistent
with the prediction �L�K* previously derived as a sufficient con-
dition for the existence of viscous shocks.

For increasing L the fold curves in Fig. 13 become steeper and
move closer to �=0, and we conjecture that this scenario repeats
further as L increases, consistent with our previous scaling results.
Indeed, the dKS Eq. �2� has the scaling symmetry x�x /,
t� t /4, u�3u, ��4�, ��2�. For �=0, we thus have exact
scaling symmetry in the �-L parameter space, which persists in
approximate form for fixed ��0.

While numerical continuation fails, it appears that the fold
curves may connect via small-amplitude rolls for ��0 to the
trivial solution u�0 at �=0. For �=0, the fold curves connect to

Fig. 10 Viscous shocks: Labeled solutions „a… A and „b… B
from Fig. 9„a…
bubble solutions of the KS equation; Fig. 1�a� shows one such
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olution. The curves intersect �=0 at approximately regular inter-
als, separated by �L /2�4.42�2� /2. This value equals the
avelength of stationary oscillations about the trivial solution
=0, with wave number ks=2 �recall that the relevant part of the
pectrum �3� for stationary solutions is �=0�. Thus we can pro-
ose an explanation for the discreteness and spacing of the fold
urves in Fig. 13: We infer that the transition from one fold curve
o the next at higher period L occurs, in the KS limit �=0, via the
nsertion of two �by reversibility� complete oscillations with wave
umber ks—asymptotically for large L—into the bubble. The
umber of bubble oscillations for �=0 may thus serve to para-
etrize the fold curves. In summary, the transition from viscous

hocks of the dKS equation to the KS equation is rather compli-
ated, even in the context only of bifurcations of odd stationary
eriodic solutions. From the point of view of the observed PDE
ynamics, however, it is equally important to investigate the sta-
ility of these stationary solutions.

5.3 Stability of Viscous Shocks. To supplement the existence
esults reported above, we discuss the stability of viscous shocks,
nd numerically compute boundaries of stability in a representa-
ive region in �� ,L� parameter plane. To this end, we again use the
ontinuation software AUTO, and adapt methods recently devel-
ped for the computation and continuation of spectra �26� to this
ourth-order PDE �2�. We emphasize that our computations cover
nly a small part of parameter space, but we expect that these
eflect the general destabilization mechanisms when continuing
iscous shocks to the KS limit �=0. Our main results are plotted
n Fig. 16, and we next describe our approach by continuation,
eferring to Ref. �26� for details.

ig. 11 Flat and roll shocks: „a… A flat shock: solution C from
ig. 9„a…, remaining near �� for a while; „b… a roll shock: solu-
ion D from Fig. 9„a…
We determine the stability of stationary solutions u�x� via the

ournal of Computational and Nonlinear Dynamics
spectrum of the linearization L�u� of Eq. �2� in a solution, as in
Eq. �6�; on an L-periodic domain, we write this operator as
Lper�u� :Hper

4 ��0,L��→Lper
2 ��0,L��. Note that unlike in the B-S Eq.

�8�, Lper�u� is generally not self-adjoint �for u�0�, and its spec-
trum thus admits complex eigenvalues. In order to numerically
continue selected eigenvalues of Lper�u� �26� it is helpful to view
its spectrum as part of the spectrum of L�u� cast as an operator
LR�u� :H4�R�→L2�R�. Recalling Eq. �7�, we compute curves of
this spectrum for fixed �� ,L� by continuing solutions of the
boundary value problem

Fig. 12 Roll „cellular… solutions: „a… Solution E from Fig. 9; „b…
a family of rolls for � between 2 and 7

Fig. 13 Folds on different sheets of solutions in the „� ,L…
plane. The horizontal dotted line marks the slice shown in Fig.
14„a…, and the box the range of Fig. 16„a…. The sufficient exis-
tence criterion from Sec. 4 is sketched by the thick dotted line,
but viscous shocks continue until the relevant fold curves to

the left and below this curve.
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Vx = A�u,u1,��V, V�L� = ei�V�0� �15�

n the parameter �. To have full access to the points �u�x� ,u1�x��,
e solve Eq. �15� simultaneously with the nonlinear system �5�
ith reversible boundary conditions u=uxx=0; periodic boundary

onditions could also be implemented with appropriate modifica-
ions to break the reversible symmetry and fix the phase. For
�2�Z, Eq. �15� is precisely the eigenvalue problem for Lper�u�,
nd its finite difference approximation was used to obtain initial
onditions for the computations.

Figure 15 shows the result of one such computation, for
=60, �=0.15, in which we plot the most unstable curves in the

pectrum of LR�u�; each of the isolated parts of this spectrum
ontains an eigenvalue of Lper�u� �26�, so that for these param-

ig. 14 Creation of a rip in the surface of viscous shocks at a
old point of folds: two sheets of solutions touch, and a pair of
olds is created. „a… L=62.20: the upper branch A-D is a branch
f viscous shocks, terminating in a fold to the left of D with
maller �; „b… L=62.22: two new folds created after the sheets
f solutions touch and tear apart; the fold of viscous shocks is
ow the rightmost one connecting A and B; „c… L=62.6: cross
ection near the cusp point, at which two folds of flat shocks
nnihilate each other.
ters the viscous shock is unstable, with four complex conjugate

46 / Vol. 1, OCTOBER 2006
pairs of eigenvalues with positive real parts.
Fixing �=0 and L, we next continue the solution u together

with an eigenfunction V and eigenvalue � of Lper�u� in �, and thus
locate the onset of instabilities of specific eigenvalues, where
Re���=0. By then fixing Re���=0 in the boundary value problem
�15�, continuation in �� ,L� yields the parameter curve along
which this eigenvalue crosses the imaginary axis. Note that other
eigenvalues may become unstable independently, though this is
not the case here.

The spectrum plotted in Fig. 15 moves into the left half plane as
� increases above ��0.17; this strict stability of the nontrivial
eigenvalues implies exponential orbital stability of the underlying
viscous shocks, as observed in the PDE simulations. Interpreting
this for decreasing �, there is thus a Hopf bifurcation of viscous
shocks for L=60, ��0.17. To locate the stability boundary for
viscous shocks, we continue the Hopf bifurcation curves
Re���� ,L��=0 in the �� ,L�-plane. In Fig. 16�a� we plot the re-
sulting destabilization curve, which turns out to involve only one
eigenvalue; here the thin lines are not relevant for viscous shocks,
as they correspond to solutions on other solution sheets, reached
via a fold or cusp. Combining the Hopf bifurcation curve of vis-
cous shocks with the existence boundary consisting of fold curves
and cusp points plotted in Fig. 13, we obtain part of the boundary
of stable viscous shocks in the �� ,L�-parameter plane as plotted in
Fig. 16�b�. In particular, the Hopf bifurcation curve connects two
fold curves, and we conjecture that this structure persists through-
out the �� ,L� parameter plane. There is thus no connection of
stable viscous shocks to the KS equation, as their region of exis-
tence is strictly bounded away from �=0; rather, for decreasing
��0 viscous shocks either cease to exist in a fold, or destabilize
via Hopf bifurcations, as suggested by simulations of the PDE �2�.

6 Discussion
The understanding of the origins of complex spatial and tem-

poral behavior, such as observed and extensively studied in the
Kuramoto-Sivashinsky equation, is advanced by the investigation
of well-chosen limits, and to this end the destabilized KS Eq. �2�
provides a particularly interesting model: for sufficiently large �L,
the observed PDE dynamics appear almost gradient-like, with
strong attraction to shock-like solutions, but these become un-
stable and cease to exist in the limit �→0.

In the present work we have concentrated on the origins and
bifurcations of the viscous shock solutions which occur for large

Fig. 15 Part of the essential spectrum of a viscous shock with
„� ,L…= „0.15,60… „only the spectrum in the upper half plane is
needed, due to symmetry under complex conjugation…. Bullets
are used to enlarge the four unstable, extremely small closed
isolated curves, each of which contains an eigenvalue of
Lper„u….
�L. We have shown how to understand the emergence of viscous
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hocks and related solutions geometrically in four-dimensional
hase space: the invariant line due to the destabilizing term �u in
q. �2� provides a reinjection mechanism that perturbs hetero-
linic solutions to a rich family of periodic solutions with an ex-
ended linear region in their profile; for comparison, we have fully
escribed this mechanism in the simpler second-order Burgers-
ivashinsky Eq. �8�. The rigorous construction of these periodic
olutions of a reversible four-dimensional dynamical system re-
ains a challenge, however �due to the existence of a first inte-

ral, the corresponding study of stationary solutions for the KS
q. �1� occurs in a simpler three-dimensional setting�.
Using numerical continuation, we have explored the transition

rom viscous shocks to the KS limit, and even within the limited
ontext of stationary, reversible solutions, the rich bifurcation
tructure and multitude of solutions are apparent. Of particular
ote is that the branches of viscous shocks are not stably con-
ected to the KS limit �=0 in �� ,L� parameter space, either de-
tabilizing via a Hopf bifurcation, or �in particular for fixed period
� ceasing to exist in a saddle-node bifurcation. To locate the
opf bifurcations, we employed a recently developed approach to

pectral computation via continuation, which allows the accurate
etection of the onset of instability in a representative region of
arameter space. The folds are due to the interaction of viscous

ig. 16 „a… The onset of Hopf bifurcation in the „� ,L… plane;
nly the thick line is relevant for viscous shocks. „b… The rel-
vant part of „a… plotted together with fold curves from Fig. 13.
he bullet denotes the location of the viscous shock used in
ig. 15.
ournal of Computational and Nonlinear Dynamics
shocks with related stationary solutions, and we computed several
examples of solutions expected from the geometric analysis; a
more systematic study should provide a fuller understanding of
the solutions and bifurcations towards spatio-temporal chaos in
the KS limit �→0.
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