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Abstract. Using the background field variational method developed by Doering and Constantin, we obtain
upper bounds on heat transport in Rayleigh-Bénard convection assuming mixed (Robin) thermal conditions
of arbitrary Biot number η at the fluid boundaries, ranging from the fixed temperature (perfectly conduct-
ing, η = 0) to the fixed flux (perfectly insulating, η = ∞) extremes. Solving the associated Euler-Lagrange
equations, we numerically find optimal bounds on the averaged convective heat transport, measured by the
Nusselt number Nu, over a restricted one-parameter class of piecewise linear background temperature pro-
files, and compare these to conservative analytical bounds derived using elementary functional estimates.
We find that analytical estimates fully capture the scaling behaviour of the semi-optimal numerical bounds,
including a clear transition from fixed temperature to fixed flux behaviour observed for any small nonzero
η as the usual Rayleigh number Ra increases, suggesting that in the strong driving limit, all imperfectly
conducting boundaries effectively act as insulators. The overall bounds, optimized over piecewise linear
backgrounds, are Nu ≤ 0.045 Ra1/2 in the fixed temperature case η = 0, and Nu ≤ 0.078 Ra1/2 in the
large-Ra limit in all other cases, 0 < η ≤ ∞.

1 Introduction

Thermal convection, in which heating from below and
cooling from above induces buoyancy-driven flow in a
fluid, has long attracted considerable research interest,
both for the fascinating scientific problems it presents
and due to its wide-ranging relevance to the earth and
astrophysical sciences, engineering and elsewhere. A com-
mon paradigm for this research is the behaviour of the
Rayleigh-Bénard model system, in which a fluid layer
sandwiched between two horizontal plates is subject to
thermal driving; and much attention has focused on the
dynamical and statistical properties of the turbulent state
attained for sufficiently strong heating [1,2]. Despite in-
tensive experimental and theoretical efforts, some funda-
mental problems in turbulent convection remain incom-
pletely understood, however, such as the scaling of the
Nusselt number Nu, representing the convective enhance-
ment of vertical heat transport, with the Rayleigh number
Ra, a measure of the driving via the temperature differ-
ence across the fluid layer [3].

While a detailed analytical understanding of solutions
of the governing fluid equations is beyond reach, there has
been considerable success in finding a priori bounds on
time-averaged bulk flow quantities using energy balances
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derived from the Navier-Stokes equations. Inspired by sug-
gestions of Malkus [4], the “optimum theory of turbu-
lence” of Howard [5,6] and Busse [7,8] was the first system-
atic approach to obtaining such bounds, via variational
principles derived under statistical stationarity assump-
tions, and continues to be of interest [9]. More recently,
the “background method” of Doering and Constantin
(based on a decomposition introduced by Hopf [10]),
has allowed rigorous upper bounds to be proved with-
out requiring assumptions on the flow; initially devel-
oped for shear flows [11,12], it has subsequently been
fruitfully applied to numerous contexts in convection [13]
and elsewhere, and is the approach taken in the present
study. When both approaches are applicable, the optimal
bounds obtained in the Malkus-Howard-Busse (MHB) and
Constantin-Doering-Hopf (CDH) methods can be shown
to coincide [14–16].

The background method for convection relies on the
decomposition of the physical temperature field T (x, t)
into a “background” profile τ(z), which satisfies the inho-
mogeneous applied thermal boundary conditions (BCs),
and a “fluctuation field” θ(x, t) (decompositions with a
nonzero background velocity or a more general tempera-
ture background appear not to improve the bounds [15]).
The upper bound on Nu can be expressed as a functional
of the background field τ , and is usually expressed in the
final form Nu ≤ CRap (up to a possible logarithmic Ra-
dependence), where in general both the exponent p and
the prefactor C are expected to depend on τ .
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The problem of finding the optimal (lowest) upper
bound then becomes one of minimizing this functional,
subject to a positivity condition on a τ -dependent
quadratic form, or equivalently, a “spectral condition” on
an associated linear functional. The analytical solution of
the full variational problem for the optimal background
profile, incorporating the spectral constraint, is in general
out of reach except in simplified cases (see [17] and [18,
Chap. 2]); whereas the complete numerical solution of the
CDH variational upper bounding problem, while achiev-
able [19,20], requires extensive careful and delicate com-
putations.

Instead of attempting to solve the full optimal problem
over all backgrounds, conservative (non-optimal) bounds
may more readily be obtained by restricting consideration
to parametrized families of background profiles τ(p)(z);
the spectral constraint then translates to conditions on
the parameter(s) p. Given explicit formulas for τ(p)(z),
in many cases functional estimates applied directly to the
quadratic form can be used to derive sufficient conditions
on p for satisfaction of the spectral constraint, and hence
to obtain rigorous, fully analytical bounds on the Nu-Ra
relationship.

The simplest and most common choice is to let the
background profiles τ = τδ(z) be piecewise linear func-
tions parametrized by a boundary layer width δ, with
τ ′ = 0 in the bulk of the domain. With this choice elemen-
tary, uniform in wave number Cauchy-Schwarz estimates
on the quadratic form often suffice to establish analytical
bounds Nu ≤ CRap. In some cases, the scaling exponent
p in these bounds is already optimal (by comparison with
more careful analyses and/or experimental expectations),
so that improvements achieved through optimization over
a wider class of backgrounds τ or more careful verification
of the spectral constraint could at best lower the prefac-
tor C in the bound. Notably, for finite Prandtl number
convection with fixed temperature BCs, the analytical ex-
ponent p = 1/2 proved using piecewise linear backgrounds
in the pioneering work of Doering and Constantin [13] co-
incides with that obtained in the full optimal solution of
the bounding problem [19].

Given the apparent crudeness of the derivation of such
analytical bounds, in general one may wonder whether a
scaling exponent p obtained in this way is the best pos-
sible, even within the restricted one-parameter family of
piecewise linear background profiles τδ(z). Otero [18] has
developed a semi-analytic method for computing the opti-
mal bound on the Nu-Ra relationship over all backgrounds
τδ(z), combining exact solutions of the (piecewise constant
coefficient) Euler-Lagrange equations for the minimizing
fields with numerical solution of the nonlinear algebraic
equations enforcing solvability (for each horizontal wave
number separately), and overall numerical optimization.
In the cases in which a comparison has been performed
to date – shear flow (compare [12] with [18]), infinite
Prandtl number convection [18,21], and porous medium
flow [22,23] – the conservative analytical estimates have
been found to capture the scaling optimized available over
all piecewise linear backgrounds τδ(z). In the present work,

we compare scaling behaviours predicted by the elemen-
tary estimates to the semi-optimal results obtained us-
ing Otero’s method in some detail, for the overall Nu-Ra
bound but also vis-à-vis intermediate quantities and the
behaviour of the balance parameter [24].

In studies of turbulent Rayleigh-Bénard convection, a
common assumption – as in the analyses cited above –
is that the lower and upper boundaries of the fluid are
held at known uniform temperature, or equivalently, that
the bounding plates are perfect conductors. Realistically,
though, boundaries are imperfectly conducting; and even
when they have much higher conductivity than the fluid,
as is typical, as Ra (and hence Nu) increases, the Nu-
dependent effective conductivity of the fluid eventually be-
comes comparable to and then exceeds that of the plates.
In fact, in the Ra → ∞ limit one might expect the fluid ef-
fectively to “short circuit” the system, with the bounding
plates acting essentially as perfect insulators by compari-
son; in this extreme it would be the heat flux, rather than
the temperature, which is fixed at the boundaries.

Motivated by such considerations, Otero et al. [25]
showed that the CDH background method could be used
to obtain upper bounds on convective heat transport also
in the limiting case of fixed flux BCs, as discussed further
below. In the last decade various modelling [26,27], exper-
imental [28] and numerical [29] studies have also sought
to understand the effect on heat transport of the thermal
properties of the boundaries, and the finite thermal con-
ductivity of the bounding plates is now commonly taken
into account in interpreting experiments [3,30,31]. In this
light, it is notable that recent extensive investigations us-
ing direct numerical simulation [32–34] have, rather sur-
prisingly, found no apparent difference in the Nu-Ra rela-
tionship between fixed temperature and fixed flux thermal
BCs.

The above-mentioned analysis of Otero et al. [25] on fi-
nite Prandtl number, fixed flux convection, using the stan-
dard background fields τδ(z) and elementary functional
estimates on the quadratic form, demonstrated an upper
bound of the form Nu ≤ C∞Ra1/2. While the overall scal-
ing exponent p = 1/2 agreed with that previously ob-
tained for fixed temperature BCs (albeit with a slightly
different prefactor, C∞ �= C0), the intermediate estimates
underlying these bounds were quite different. In particu-
lar, since for fixed heat flux the (averaged) temperature
drop across the fluid is not known a priori, it was neces-
sary to introduce a control parameter R as a measure of
the driving, and the overall bound was found via estimates
of the form Nu ≤ c̃ R1/3, Ra ≥ c̃′ R2/3 [25].

In recent work by one of us [35], the bounding formal-
ism for finite Prandtl number Rayleigh-Bénard convection
was developed for general mixed thermal BCs with fixed
Biot number η, identifying the fixed temperature [13] and
fixed flux [25] bounding problems as the η = 0 and η = ∞
extremes of the general case.

In this paper we consider the bounding problem for
general Biot number η in more depth. We review the for-
mulation [35], describe the spectral constraint on back-
ground profiles τ(z), and discuss analytical bounds for



R.W. Wittenberg and J. Gao: Conservative bounds for convection with fixed Biot number boundaries 567

piecewise linear profiles τδ(z). We also describe Otero’s
method [16,18,23] and use it to compute the optimal
solution of the full variational problem over backgrounds
τδ(z); again, the overall bounds have the form Nu ≤
CηRa1/2, where our computed prefactors improve on pre-
vious results for the fixed flux and general Biot num-
ber cases 0 < η ≤ ∞. As in [18,23], we find that
the wave number-independent elementary analytical esti-
mates yield the optimal scaling available for backgrounds
of the form τδ(z); this agreement extends also to inter-
mediate scaling behaviours and the balance parameter. In
particular, for small η the numerical semi-optimal bounds
show a clear transition from a fixed temperature to a fixed
flux scaling regime as Ra increases, as predicted analyti-
cally [35]; we find Cη = C∞ for all η > 0.

2 Formulation of equations

We begin by summarizing the governing equations and
identities; see [35] for more details.

2.1 Fluid equations

Consider a fluid of density ρf , kinematic viscosity νf ,
thermal diffusivity κf and thermal expansion coefficient α
confined between two horizontal parallel plates, separated
by a distance h (and let the gravitational acceleration be
−g ez). At the upper and lower boundaries of the fluid (the
interfaces with the bounding plates, assumed to have iden-
tical thermal properties), thermal driving is applied, with
the thermal boundary conditions (BCs) assumed to take
the general mixed (Robin) form T ∗ + η∗n · ∇T ∗ = A∗

l,u at
z = 0, h for some given A∗

l and A∗
u < A∗

l (for 0 ≤ η∗ < ∞;
variables with stars are dimensional). These BCs imply a
temperature scale Θ and reference temperature Tref,

Θ =
A∗

l − A∗
u

1 + 2η∗/h
, Tref =

A∗
u + η∗(A∗

l + A∗
u)/h

1 + 2η∗/h
, (2.1)

chosen so that the conduction temperature profile takes
the dimensionless form T = 1 − z across the fluid [35].

The dimensionless fluid equations, in the Boussinesq
approximation, for the velocity field u = u ex+v ey+w ez

and temperature field T take the form

Pr−1

(

∂u
∂t

+ u · ∇u
)

+ ∇p = ∇2u + R T ez, (2.2)

∇ · u = 0, (2.3)
∂T

∂t
+ u · ∇T = ∇2T (2.4)

in the fluid 0 < z < 1, where we nondimensionalized with
respect to the fluid layer thickness h, thermal diffusiv-
ity time h2/κf and temperature scale Θ. We assume Lx,
Ly-periodicity in all variables in the horizontal x- and y-
directions, respectively; and the velocity field satisfies the
usual no-slip BCs u = 0 at z = 0, 1.

In dimensionless form, the mixed (Robin) thermal BCs
take the form

T − η Tz = 1 + η on z = 0, T + η Tz = −η on z = 1,
(2.5)

where η = η∗/h is the Biot number. The limiting cases
are well-understood: for η → 0, (2.5) reduces to the fixed
temperature (Dirichlet) thermal BCs

T = 1 on z = 0, T = 0 on z = 1, (2.6)

while η → ∞ gives the fixed flux (Neumann) limit

Tz = −1 on z = 0 and z = 1. (2.7)

In (2.2), Pr is the usual Prandtl number Pr = νf/κf ,
while the other dimensionless parameter R is the control
parameter for the system. Since the actual temperature
drop across the fluid is given directly by the thermal BCs
only in the fixed temperature case η = 0, in lieu of the
usual Rayleigh number R is defined in terms of the tem-
perature scale Θ from (2.1) as

R =
αgh3

νfκf
Θ . (2.8)

2.1.1 Notation

As in [25], we define the horizontal average of functions
h(x) = h(x, y, z) as

h(z) =
1
A

∫ Ly

0

∫ Lx

0

h(x, y, z) dxdy,

where A = LxLy is the dimensionless cross-sectional area,
and the time average of functions g(t) by

〈g〉 = lim sup
τ→∞

1
τ

∫ τ

0

g(t) dt.

The notation
∫

f
h = A

∫ 1

0
h(z) dz denotes a volume inte-

gral over the entire fluid layer, and L2 norms are defined
over the fluid in the usual way:

‖h‖2 =
∫

f

h2 =
∫ 1

0

∫ Ly

0

∫ Lx

0

h2(x, y, z) dxdy dz.

2.2 Rayleigh and Nusselt numbers

The physical temperature drop across the fluid, averaged
horizontally and over time, is ΔT ∗ = 〈T ∗|z∗=0−T ∗|z∗=h〉,
or in nondimensional form,

ΔT = −〈T
∣

∣

1

z=0
〉 = 〈T |z=0 − T |z=1〉 =

ΔT ∗

Θ
, (2.9)

in the fixed temperature case η = 0 we have ΔT ∗ = Θ,
ΔT = 1, but in general this is unknown a priori. One may
readily verify that in equilibrium, the heat fluxes across
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the bottom and top boundaries of the fluid balance, and
we define the horizontally- and time-averaged nondimen-
sional boundary heat flux as

β =
〈

−T z

〉∣

∣

z=0
=

〈

−T z

〉∣

∣

z=1
, (2.10)

this is fixed at β = 1 (only) for fixed flux BCs η = ∞. For
0 < η < ∞, the fixed Biot number BCs (2.5) immediately
imply a relation between ΔT and β:

ΔT + 2η β = 1 + 2η. (2.11)

The usual Rayleigh number Ra, defined in terms of the
(averaged) temperature drop across the fluid, is now re-
lated to the control parameter R via

Ra =
αgh3

νfκf
ΔT ∗ = R ΔT. (2.12)

The Nusselt number, the ratio of the total to the conduc-
tive vertical heat transport, may be computed as usual
via Nu = 1 + 〈

∫

f wT 〉/AΔT . Now 〈
∫

f wT 〉 may be evalu-
ated via averages of the thermal advection-diffusion equa-
tion (2.4), to give the general Nusselt number identity [35]

Nu =
β

ΔT
, (2.13)

from which, using (2.12), we obtain Nu Ra = R β. Note
that, for 0 < η < ∞, to obtain an upper bound on Nu
it is sufficient to bound either β from above or ΔT from
below, since ΔT and β are related by (2.11).

2.2.1 Energy identities

Taking the inner product of (2.2) with u, integrating over
the fluid using incompressibility and the boundary condi-
tions, and taking time averages gives the expression for
the momentum dissipation

1
AR

〈‖∇u‖2〉 =
1
A

〈∫

f

wT

〉

= β − ΔT, (2.14)

note that this implies Nu = β/ΔT ≥ 1. Similarly, we
obtain the thermal energy identity by multiplying (2.4)
by T , integrating by parts and time averaging, to give

1
A
〈‖∇T ‖2〉 =

〈

TTz

∣

∣

1

z=0

〉

. (2.15)

2.3 Background field

Following the Constantin-Doering-Hopf “background” ap-
proach, we decompose the velocity and temperature fields
into “background” and “fluctuating” fields, via u(x, t) =
0 + v(x, t) (using zero background velocity) and

T (x, t) = τ(z) + θ(x, t). (2.16)

Here the background temperature profile τ(z) carries the
inhomogeneous BCs (2.5), τ(0)−ητ ′(0) = 1+η and τ(1)+

ητ ′(1) = −η, so that θ(x, t) satisfies homogeneous Robin
BCs with fixed Biot number, θ + ηn · ∇θ = 0, or in our
geometry,

θ − η θz = 0 at z = 0, θ + η θz = 0 at z = 1. (2.17)

Defining Δτ = τ(0)− τ(1), γ = −τ ′(0) = −τ ′(1), the BCs
on τ(z) imply the relation (compare (2.11))

Δτ + 2η γ = 1 + 2η. (2.18)

Substituting the decomposition (2.16) into (2.2)–(2.4), we
obtain the evolution equations for the velocity and tem-
perature fluctuations,

Pr−1

(

∂v
∂t

+ v · ∇v
)

+ ∇p̃ = ∇2v + R θ ez, (2.19)

∂θ

∂t
+ v · ∇θ = ∇2θ + τ ′′ − wτ ′, (2.20)

with ∇ · v = 0, where the R τ ez term has been absorbed
into a redefined pressure. Multiplying (2.19) and (2.20) by
v and θ, respectively, and integrating over the domain, we
find that norms of the fluctuations evolve according to

1
2PrR

d

dt
‖v‖2 = − 1

R
‖∇v‖2 +

∫

f

wθ, (2.21)

1
2

d

dt
‖θ‖2 = −‖∇θ‖2 + A θθz

∣

∣

1

z=0
−

∫

f

θzτ
′

+ A θτ ′∣
∣

1

z=0
−

∫

f

wθτ ′. (2.22)

2.3.1 An identity for the boundary heat flux β

As preparation for formulating a variational bounding
principle, we obtain an identity giving β as a sum of a func-
tional of the background τ and a τ -dependent quadratic
form in the fluctuating fields v and θ. We outline the
derivation of such a formula; see [35] for more details.

We relate the norms of gradients of the fields u and T
(which are related to β and ΔT through (2.14)–(2.15)) to
those of v and θ by expressing the decomposition u = v,
T = τ + θ in the form

1
R

‖∇u‖2 =
1
R

‖∇v‖2
, (2.23)

‖∇T ‖2 = ‖∇θ‖2 + 2
∫

f

θzτ
′ +

∫

f

τ ′2. (2.24)

Introducing a “balance parameter” b [24], we form the
combination b[2(2.22) + (2.24)] + (1 − b)[(2.23)]; taking
time averages and substituting (2.14)–(2.15), we find

bA〈TTz

∣

∣

1

z=0
〉 + (1 − b)A(β − ΔT ) = b

∫

f

τ ′2

+ 2bA
〈

θθz

∣

∣

1

z=0
+ θτ ′∣

∣

1

z=0

〉

− bQτ,Re [v, θ] . (2.25)
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Here we have defined the quadratic form Qτ,Re by

Qτ,Re [v, θ] =
〈∫

f

[

1
Re

|∇v|2 + 2τ ′wθ + |∇θ|2
]〉

,

(2.26)
where for b > 1 the “effective control parameter” Re is

Re =
b

b − 1
R ≥ R. (2.27)

Simplifying the first term in (2.25) using (2.16) and rear-
ranging terms, we obtain

b (βΔτ − γΔT )+(1−b)(β−ΔT ) = b

(∫ 1

0

τ ′2 dz − γΔτ

)

− b

A
Q′

τ,Re
[v, θ], (2.28)

where the modified quadratic form Q′
τ,Re

is

Q′
τ,Re

[v, θ] = Qτ,Re [v, θ] − A
〈

θθz

∣

∣

1

z=0

〉

; (2.29)

note that the added boundary term vanishes in both the
fixed temperature and fixed flux limits. For mixed thermal
BCs with finite Biot number, we may now substitute for
ΔT and Δτ using (2.11) and (2.18), to obtain an identity
purely in terms of β and γ; after some algebra, this is

(1 + 2η)(β − 1) = b

(∫ 1

0

τ ′2 dz − (1 + 2η) + 2ηγ2

)

− b

A
Q′

τ,Re
[v, θ], (2.30)

where for fixed η < ∞, the boundary term in Q′
τ,Re

from
(2.29) can be written, using (2.17), as

θθz

∣

∣

1

z=0
= −η

(

θ2
z |z=0 + θ2

z |z=1

)

≤ 0. (2.31)

3 A bounding principle

The identity (2.30) now forms the basis for finding an
upper bound on β and hence (via (2.11) and (2.13)) on the
Nusselt number Nu: let the class of allowed fields be those
scalar fields θ(x) and divergence-free vector fields v(x)
satisfying the homogeneous BCs of the problem, namely
horizontal periodicity, the no-slip condition v = 0 on z =
0, 1, and conditions (2.17) on θ; note that the class of
allowed fields in this sense includes all solutions of (2.19)–
(2.20) at each time t. Then if for all allowed v and θ,
Q′

τ,Re
[v, θ] is bounded below, it follows that (2.30) implies

an upper bound on β; note that since Q′
τ,Re

[μv, μ θ] =
μ2Q′

τ,Re
[v, θ] for μ ∈ R, if the lower bound exists, it must

be zero.
Within the CDH background formalism, a bounding

principle is thus as follows: if for a given R > 0, we can
find a background profile τ(z) and a balance parameter
b > 1 so that Q′

τ,Re
[v, θ] ≥ 0 for all allowed v and θ, then

(for η < ∞) an upper bound Bη on the averaged boundary
heat flux β is given by

β ≤ 1 − b +
b

1 + 2η

(∫ 1

0

τ ′2 dz + 2ηγ2

)

≡ Bη[τ ; b]. (3.1)

Using (2.11) and (2.18), for η > 0 we may derive the cor-
responding lower bound Dη for the averaged temperature
drop across the fluid ΔT :

ΔT ≥ 1 + b(2Δτ − 1)− b
2η

1 + 2η

(∫ 1

0

τ ′2 dz +
1
2η

Δτ2

)

≡

Dη[τ ; b], (3.2)

with Dη[τ ; b]+2η Bη[τ ; b] = 1+2η. Consequently, via (2.13)
the Nusselt number is bounded above by

Nu ≤ Nη[τ ; b] = Bη[τ ; b]/Dη[τ ; b]. (3.3)

3.1 Admissible backgrounds and the spectral
constraint

The requirement that the quadratic form Q′
τ,Re

is positive
semi-definite is a condition on τ : we say that a background
field τ(z) satisfying the inhomogeneous thermal BCs (2.5)
is admissible for a given Re = bR/(b− 1) > 0 (that is, for
R > 0 and b > 1) if Q′

τ,Re
[v, θ] ≥ 0 for all allowed fields v

and θ.
The positivity condition on Q′

τ,Re
is equivalent to

λ̄[τ ; Re] = inf
v,θ

Q′
τ,Re

[v, θ] ≥ 0, (3.4)

where the infimum is taken over allowed fields v
and θ subject to the normalization condition ‖θ‖2 +
(PrRe)

−1 ‖v‖2 = 1. This may also be expressed as the
condition that the elliptic operator Lτ,Re associated with
the quadratic form Q′

τ,Re
has a positive semi-definite spec-

trum, that is, that the lowest eigenvalue λ0 = λ0[τ ; Re] of
Lτ,Re is nonnegative (one may verify using standard meth-
ods that λ0 = λ̄). Consequently, the admissibility criterion
on background fields τ(z) is also referred to as a spectral
constraint on τ [13].

The Euler-Lagrange equations for the minimization
problem in (3.4), giving the eigenvalues λ of Lτ,Re , are

1
2
∇P − 1

Re
∇2v + τ ′θ ez =

λ

PrRe
v, (3.5)

∇ · v = 0, (3.6)

τ ′w −∇2θ = λ θ, (3.7)

where P = P (x) and λ are the Lagrange multipliers en-
forcing the pointwise divergence-free constraint and the
normalization condition, respectively. In deriving (3.5)–
(3.7), as usual one computes functional derivatives of the
quadratic form

H[v, θ] = Q′
τ,Re

[v, θ]−
∫

f

[

λ

(

|θ|2+
1

PrRe
|v|2

)

−P∇ · v
]

,
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we remark that in calculating δH/δθ, the boundary terms
obtained from integration by parts cancel exactly with the
boundary term in the definition (2.29) of Q′

τ,Re
, indicating

that for general Biot number 0 < η < ∞, the retention of
the term A θθz

∣

∣

1

z=0
in the quadratic form is crucial.

3.1.1 Stability of the conduction state

We recall the energy, or nonlinear, stability theory of the
conduction state u = 0, T = τc(z) = 1−z for general Biot
number η ∈ [0,∞] [36]: adding (2.21) and (2.22) and sub-
stituting τ ′ = −1, the evolution of arbitrary perturbations
from the conduction state satisfies

1
2

d

dt

(

1
PrR

‖v‖2 + ‖θ‖2

)

= −I[v, θ], (3.8)

where we define the quadratic form

I[v, θ] =
∫

f

[

1
R
|∇v|2 − 2wθ + |∇θ|2

]

− A θθz

∣

∣

1

z=0
.

Letting f(t) = ‖θ‖2 + (PrR)−1 ‖v‖2, we define

μ0 = μ0(R) = inf
v,θ

f(t)=1

I[v, θ] = inf
v,θ

f(t) �=0

I[v, θ]
f(t)

, (3.9)

where we minimize over allowed fields v and θ. Then from
(3.8) we have df/dt = −2I[v, θ] ≤ −2μ0f , so that if μ0 >
0 for a given R and η, the L2 norms of all perturbations
decay in time, and the conduction solution is stable. Since
μ0 decreases monotonically in R, for each Biot number
η there is a critical value Rac,η [37], with μ0(Rac,η) = 0
(noting that in the conduction state, ΔT = 1 and R =
Ra), so that for R < Rac,η the conduction state is energy
stable and thus the unique time-asymptotic state of the
system.

The Euler-Lagrange equations for the fields that min-
imize I[v, θ] are, as usual (with Lagrange multipliers μ
and π(x) enforcing normalization and incompressibility,
respectively),

−R

2
∇π + ∇2v + R θez = − μ

Pr
v, (3.10)

∇ · v = 0, (3.11)

∇2θ + w = −μ θ, (3.12)

with the appropriate homogeneous BCs. These are in fact
the same equations as those obtained from (2.19)–(2.20)
for the linear stability problem for the conductive state
(identifying Rπ/2 and p), confirming that the linear and
nonlinear stability boundaries coincide in this case.

Since I[v, θ] = Q′
τc,R[v, θ] for stationary fields, com-

paring (3.5)–(3.7) with (3.10)–(3.12) it is now apparent
that the stability of the conduction state τc(z) = 1 − z is
equivalent to the admissibility of the background τ = τc

(with R instead of Re). (We can analogously interpret the

spectral constraint for a general background τ as an en-
ergy stability criterion on T = τ(z) at control parameter
Re, if it were a solution (with u = 0) of the governing
PDEs (2.2)–(2.4)).

For general Re = bR/(b − 1), it follows that the con-
duction temperature profile τc(z) is admissible for all
Re ≤ Rac,η; whenever this is the case, the bounds in (3.1)–
(3.2) are Bη = Dη = 1, and the (bound Nη on the) Nusselt
number takes its minimum value of 1. Following [24] we
may thus determine the largest R = (b−1)Re/b for which
τc is admissible, by maximizing (b− 1)Rac,η/b over b > 1;
taking b = ∞, so that Re = R, we find that the conduc-
tion state is admissible right up to the energy stability
boundary R = Rac,η. As in [23,24], the use of a balance
parameter b permits us to obtain upper bounds bifurcat-
ing at the correct value of Ra.

When R > Rac,η, the conduction state is unstable,
and correspondingly the profile τ = τc is not admissible
for any b > 1. In this case, the best bound on the Nusselt
number available in this formalism may be obtained, in
principle, by minimizing Nη[τ ; b] given in (3.1)–(3.3) over
all backgrounds τ(z) for which λ0[τ ; Re] ≥ 0, and over
b > 1. Now it may be shown (see [13,22]) that for each
Re > Rac,η the set of admissible profiles is convex, and
the analytical results outlined below and in [35] show that
it is nonempty; it follows that the optimal profile τopt(z)
minimizing the bound for a given Re lies on the boundary
of this set, with λ0[τopt; Re] = 0.

3.2 The spectral constraint in Fourier space

Using horizontal periodicity with periods Lx and Ly in
the x- and y-directions, we may Fourier decompose the
temperature fluctuation field θ as

θ(x, y, z) =
∑

k

ei(kxx+kyy)θ̂k(z), (3.13)

and similarly for P and the components (u, v, w) of v,
where k = (kx, ky) = (2πnx/Lx, 2πny/Ly) is the horizon-
tal wave vector.

Substituting into (3.5)–(3.7) yields linear differential
equations for θ̂k and the Fourier components (ûk, v̂k, ŵk)
of the velocity field v. However, following [13] we observe
that this three-dimensional problem can be reduced to a
two-dimensional one: under the change of variables from
ûk and v̂k to ûk cosϕ + v̂k sin ϕ and −ûk sin ϕ + v̂k cosϕ,
where tanϕ = ky/kx, the equation for (the new) v̂k decou-
ples, and hence v̂k(z) = 0 by the no-slip velocity BCs. We
thus obtain the Fourier space Euler-Lagrange equations

1
2

ikP̂k − 1
Re

(

D2 − k2
)

ûk =
λk

PrRe
ûk, (3.14)

1
2
DP̂k − 1

Re

(

D2 − k2
)

ŵk + τ ′θ̂k =
λk

PrRe
ŵk, (3.15)

ikûk + Dŵk = 0, (3.16)

τ ′ŵk −
(

D2 − k2
)

θ̂k = λk θ̂k (3.17)
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defined on z ∈ [0, 1], where we write k2 = |k|2 = k2
x + k2

y

and D = d/dz. The boundary conditions on the Fourier
coefficients follow immediately from those on v and θ: the
no-slip condition becomes ûk = ŵk = 0 for z = 0 and 1,
while the thermal BCs (2.17) give θ̂k−η Dθ̂k = 0 at z = 0,
θ̂k + η Dθ̂k = 0 at z = 1.

At this point we observe that the solutions of (3.14)–
(3.17) depend only on the magnitude and not on the di-
rection of the horizontal wave vector k, that is, we need
consider only the wave numbers k = |k| ≥ 0; our notation
λk for the eigenvalue reflects this.

Since among the allowed fields v and θ are ones con-
taining a single Fourier mode, the spectral constraint on
τ(z) is now equivalent to requiring λ0

k[τ ; Re] ≥ 0 for each
k. Letting Rac,η(k) be the critical Rayleigh number for in-
stability of the conduction state to perturbations at wave
number k, we have that λ0

k[τc; Re] ≥ 0 for Re ≤ Rac,η(k),
so that (for Re > Rac,η = mink Rac,η(k)) the admissibil-
ity condition on τ only needs to be checked for the finite
range of wave numbers k for which Re > Rac,η(k).

3.3 A stronger admissibility condition

The analytical solution of the Euler-Lagrange equations
(3.14)–(3.17) and derivation of the optimal background
τopt seems out of reach, even within the restricted class
of piecewise linear backgrounds discussed in Section 4. In-
stead, one may find conditions on τ ensuring Q′

τ,Re
≥ 0,

and hence derive analytical bounds on Nu, via direct es-
timates on the quadratic form Q′

τ,Re
[v, θ].

For thermal BCs other than the usual Dirichlet condi-
tions, one does not have direct control of θ near the bound-
aries, and it is difficult to see how the BCs (2.17) may be
used to strengthen estimates on the quadratic form, or
how to utilize the explicit boundary term in Q′

τ,Re
(2.29).

As demonstrated in [25] in the fixed flux (Neumann) case,
though, by utilizing incompressibility and the no-slip con-
dition on the velocity, it is possible to derive bounds while
neglecting the BCs on θ.

This suggests that we introduce a stronger condition
on background fields, using only the quadratic form Qτ,Re

(2.26): we say that τ(z), satisfying the appropriate ther-
mal BCs (2.5), is strongly admissible if Qτ,Re [v, θ] ≥ 0 for
all sufficiently smooth, horizontally periodic fields v and
θ for which ∇ · v = 0 and v = 0 at z = 0, 1, where we
do not specify BCs on θ. Since (by (2.29) and (2.31)) the
additional boundary term which appears for 0 < η < ∞
is stabilizing,

Q′
τ,Re

[v, θ] = Qτ,Re [v, θ] + Aη
〈(

θ2
z |z=0 + θ2

z |z=1

)〉

≥ Qτ,Re [v, θ], (3.18)

strong admissibility implies admissibility.

3.3.1 Fourier space formulation and elementary estimates

As in [25,35], using the decomposition (3.13) and incom-
pressibility, we may write in Fourier space:

Qτ,Re [v, θ] =
∫

f

[

1
Re

|∇v|2 + 2τ ′wθ + |∇θ|2
]

≥ A
∑

k

Qk,

(3.19)
where Qk ≡ Qk;τ,Re[ŵk, θ̂k] is defined by

Qk =
∫ 1

0

[

1
Re

(

k2|ŵk|2 + 2|Dŵk|2 +
1
k2

|D2ŵk|2
)

+2τ ′Re[ŵkθ̂∗k] +
(

k2|θ̂k|2 + |Dθ̂k|2
)]

dz. (3.20)

Here (via no-slip BCs and incompressibility) ŵk = Dŵk =
0 at z = 0, 1, while no conditions are imposed on the θ̂k.
It follows from (3.19) that τ(z) is strongly admissible, for
a given Re, if and only if Qk[ŵk, θ̂k] ≥ 0 for each k.

For future reference, following [25] we remark that the
BCs on ŵk allow one to control the indefinite term in Qk

near the boundary. Specifically, for 0 ≤ z ≤ 1/2, using the
Cauchy-Schwarz and Young’s inequalities, one finds

|ŵk(z) θ̂∗k(z)| ≤ z

2
√

2

[

a1‖Dŵk‖2

[0,
1
2 ]

+
1
a1

‖Dθ̂k‖2

[0,
1
2 ]

+
a2

k2
‖D2ŵk‖2

[0,
1
2 ]

+
k2

a2
‖θ̂k‖2

[0,
1
2 ]

]

(3.21)

for constants a1, a2 > 0, and similarly for 1/2 ≤ z ≤ 1.

4 Piecewise linear background profiles

Instead of attempting the difficult task of solving the full
optimization problem for general backgrounds τ(z), we
now specialize to a family of piecewise linear test func-
tions τδ(z), parametrized by 0 < δ ≤ 1/2, which are non-
constant only over “boundary layers” of thickness δ. Since
then the τ ′

δ appearing in the quadratic form Qτ,Re [v, θ],
and in the corresponding Euler-Lagrange equations for the
minimizing fields (3.5)–(3.7), is piecewise constant, results
are much more accessible than for general τ(z).

We thus define

τ(z) = τδ(z) =

⎧

⎨

⎩

1/2 − γ(z − δ), 0 ≤ z ≤ δ,
1/2, δ < z < 1 − δ,
1/2 − γ(z − (1 − δ)), 1 − δ ≤ z ≤ 1,

(4.1)
substituting, we find the values of γ = −τ ′

δ(0) = −τ ′
δ(1)

and Δτ = τδ(0) − τδ(1), depending on δ and η, for
which τδ(z) satisfies the fixed Biot number thermal BCs
(2.5) [35]:

γ =
1 + 2η

2(δ + η)
, Δτ = 2δγ =

δ(1 + 2η)
δ + η

. (4.2)

We also compute
∫ 1

0 τ ′2
δ dz = 2δγ2 = γΔτ ; substituting

into (3.1)–(3.2) and simplifying, we readily obtain formu-
las for the conservative bounds on β and ΔT for fixed Biot
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number convection:

β ≤ Bpwl,η(δ, b) ≡ Bη[τδ; b] = 1 + b (γ − 1), (4.3)

ΔT ≥ Dpwl,η(δ, b) ≡ Dη[τδ; b] = 1 + b (Δτ − 1), (4.4)

the corresponding upper bound on the Nusselt number is
Nu ≤ Npwl,η(δ, b) ≡ Nη[τδ; b] = Bpwl,η(δ, b)/Dpwl,η(δ, b).
We observe that δ = 1/2 gives the conduction state τc(z),
for which β = ΔT = 1, while for 0 < δ ≤ 1/2 we have
γ ≥ 1, Δτ ≤ 1.

Since from (4.2) γ decreases with δ, for fixed b we ob-
tain better upper bounds on β, and hence on Nu, by choos-
ing δ as large as possible, subject however to the spectral
constraint that τδ should be admissible for a given Re.

4.1 Analytical admissibility criterion

As outlined in [35] following numerous earlier works, we
may obtain explicit, though presumably weakened, ana-
lytical bounds on Nu using elementary estimates, uniform
in k, directly on the Fourier space quadratic forms Qk.
We shall discuss these bounds in sufficient detail to permit
comparison with the numerically obtained optimal bounds
for piecewise linear backgrounds τδ(z).

Using τ ′
δ = −γ for z ∈ [0, δ) and z ∈ (1 − δ, 1], and

τ ′
δ = 0 elsewhere, using (3.21) we estimate the indefinite

term in Qk as

∫ 1/2

0

2τ ′
δRe[ŵkθ̂∗k] dz ≥ −2γ

∫ δ

0

|ŵkθ̂∗k| dz

≥ − γδ2

2
√

2

[

a1‖Dŵk‖2

[0,
1
2 ]

+
1
a1

‖Dθ̂k‖2

[0,
1
2 ]

+
a2

k2
‖D2ŵk‖2

[0,
1
2 ]

+
k2

a2
‖θ̂k‖2

[0,
1
2 ]

]

,

(4.5)

and similarly over z ∈ [1/2, 1]. Substituting into (3.20),
this gives

Qk ≥
(

2
Re

− γδ2 a1

2
√

2

)

‖Dŵk‖2

+
(

1
Re

− γδ2 a2

2
√

2

)

1
k2

‖D2ŵk‖2 +
1
Re

k2‖ŵk‖2

+
(

1 − γδ2

2
√

2 a2

)

k2‖θ̂k‖2 +
(

1 − γδ2

2
√

2 a1

)

‖Dθ̂k‖2,

(4.6)

where norms are over [0, 1] unless otherwise specified.
We can ensure that all coefficients in (4.6) are sep-

arately nonnegative, independent of k, by letting a1 =
a2 = γδ2/2

√
2, and then choosing γ2δ4/8 ≤ 1/Re. Recall-

ing that γ = γ(δ) by (4.2), for fixed η and Re this is a

sufficient condition on δ for the strong admissibility of τδ.
Define the critical value δa obtained by this analysis by

γ(δa)2δ4
a =

(1 + 2η)2

4(δa + η)2
δ4
a =

8
Re

= 8
b − 1
bR

, (4.7)

then the spectral constraint on the piecewise linear profile
τδ is certainly satisfied for δ ≤ δa, and the best bound in
this approach is obtained with the choice δ = δa.

4.2 The optimal solution for piecewise linear
backgrounds

For the piecewise linear backgrounds τδ(z) defined in (4.1),
the Fourier-space Euler-Lagrange equations for the min-
imizing fields (3.14)–(3.17) are constant coefficient, and
for each k may thus be solved exactly, separately in the
intervals z ∈ [0, δ), (δ, 1 − δ) and (1 − δ, 1]. This permits
the complete (numerical) solution of the optimal bounding
problem within the one-parameter family of background
profiles τ = τδ; since the optimization is over a restricted
subset of all admissible backgrounds τ , it is denoted a
“semi-optimal” bound for the full problem.

4.2.1 Optimization procedure

We outline the procedure for optimizing over piecewise lin-
ear backgrounds of the form τδ(z); analogous discussions
for related problems are presented in [16,18,23].

For each effective control parameter Re > Rac,η, we
wish first to find values of δ for which τδ is admissible,
Q′

τδ,Re
≥ 0 (the existence of such δ was shown by the

analysis of Sect. 4.1, which demonstrated that δ ≤ δa is
sufficient), and then among these choose the largest.

Considering the horizontal wave numbers k separately,
we thus let δk = δk(Re) be the largest δ ≤ 1/2 for which
the lowest eigenvalue λk of (3.14)–(3.17) is nonnegative,
λ0

k(δk, Re) ≡ λ0
k[τδk

; Re] ≥ 0. Observe that we certainly
have δk ≥ δa for δa defined in (4.7); and that if λ0

k(δk, Re)
is nonnegative, then so is λ0

k(δ, Re) for δ ≤ δk. If k is
such that Re ≤ Rac,η(k), then the conduction state τc

is stable and we can set δk(Re) = 1/2; otherwise, within
the finite band of k values for which Re > Rac,η(k), we
compute δk as the smallest δ for which λk(δ, Re) = 0 (if
λk(δ, Re) = 0 for more than one δ < 1/2, then the zeros
for δ > δk correspond to vanishing higher eigenvalues of
(3.14)–(3.17)).

We now define δc = δc(Re) as the minimum (over k)
of all δk(Re), and let kc = kc(Re) be a wave number
k at which the minimum is attained (there is no addi-
tional difficulty if there is more than one such k, although
this is not observed in our computations). It follows that
λ0

k(δc, Re) ≥ 0 for all k, so that the piecewise linear back-
ground τδ(z) satisfies the spectral constraint for all Fourier
modes for all δ ≤ δc, while it fails to do so for mode kc

when δ > δc.
For a given Re = bR/(b − 1), the choice δ = δc thus

gives the best bound using piecewise linear backgrounds
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τδ. The corresponding upper bound on β (for η < ∞) is
obtained by substituting into (4.3), to give

β ≤ B′
pwl,η(b, R) ≡ Bpwl,η(δc, b) = 1 +

b

2
1 − 2δc

δc + η
, (4.8)

which depends implicitly on R, and both explicitly and
implicitly on b, due to the definition of δc(Re) by the ad-
missibility constraint. The corresponding lower bound on
ΔT (for η > 0) may be found similarly from (4.4) as

ΔT ≥ D′
pwl,η(b, R) ≡ Dpwl,η(δc, b) = 1−bη

1 − 2δc

δc + η
, (4.9)

hence we obtain the upper bound on Nu for given R and
b, N ′

pwl,η(b, R) = B′
pwl,η(b, R)/D′

pwl,η(b, R).
For given Biot number η and control parameter R,

the best bounds available for piecewise linear backgrounds
τδ(z) may now be obtained by optimizing over the balance
parameter b > 1. For η < ∞, we denote the semi-optimal
conservative upper bound on β by

β ≤ ˜Bη(R) ≡ min
b>1

B′
pwl,η(b, R), (4.10)

where the minimum is attained at b = bc,η(R) > 1; for sim-
plicity we have dropped “pwl” from our notation, but it
remains understood that we optimize only over piecewise
linear background profiles. Substituting b = bc,η allows us
to deduce the semi-optimal values of Re, and hence of δc

and kc, as functions of R for a given η.
For 0 < η < ∞ we may now compute the correspond-

ing lower bound on ΔT by ˜Dη(R) ≡ D′
pwl,η(bc,η, R) (in

the fixed flux case η = ∞, for which β = ˜Bη(R) = 1, we
maximize D′

pwl,η(b, R) over b directly). Finally, we obtain
the semi-optimal upper bound on the Nusselt number (as
a function of R and η):

Nu ≤ ˜Nη(R) ≡ ˜Bη(R)/ ˜Dη(R). (4.11)

(We remark that in optimizing over b, for 0 < η < ∞
we minimize B′

pwl,η(b, R) as in (4.10), rather than directly
working with the Nusselt number bound N ′

pwl,η(b, R). This
is because for some b > 1, the lower bound D′

pwl,η(b, R) on
ΔT from (4.9) can become negative – though it is positive
at b = bc,η(R) – which causes difficulties for minimizing
N ′

pwl,η(b, R).)
The computation culminating in (4.11) provides (for

given η) an upper bound on the Nusselt number Nu as a
function of the control parameter R, which measures the
strength of thermal driving through the applied boundary
conditions. Typically, though, one seeks the relationship
between Nu and the Rayleigh number Ra, a measure of the
averaged temperature drop across the fluid, which for R >
Rac,η only coincides with R in the fixed temperature case
η = 0. Thus in general we also need to estimate Ra, which
is done through the lower bound on ΔT using (2.12); we
obtain

Ra = R ΔT ≥ R ˜Dη(R) ≡ ˜Rη(R). (4.12)

Since both ˜Rη(R) and ˜Nη(R) are increasing in R, we can
now bound R, and hence Nu, from above in terms of
Ra. In principle, this involves inverting the relationship
(4.12), to yield Nu ≤ ˜Nη( ˜R−1

η (Ra)) ≡ Nubound,η(Ra). In
practice, we plot the bounds found in (4.11) and (4.12),
parametrized by R, and hence extract the scaling of the
Nu–Ra bounding relationship.

4.2.2 Solution of Euler-Lagrange equations

The essential first step in the above bounding and opti-
mization procedure is the computation of δk(Re), given
by the vanishing of the lowest eigenvalue of (3.14)–(3.17),
λ0

k(δk, Re) = 0. We eliminate the pressure P̂k from (3.14)–
(3.15) by taking [ik · (3.15) − D(3.14)]; setting λk = 0,
(3.14)–(3.17) then give

(

D2 − k2
) (

Dū + k2w
)

− k2Re τ ′θ = 0, (4.13)

τ ′w −
(

D2 − k2
)

θ = 0, (4.14)

ū + Dw = 0, (4.15)

where we have simplified notation by dropping hats and
subscripts, and written ū = iku.

Equations (4.13)–(4.15) should now be solved sepa-
rately in each region of definition of τδ(z) from (4.1). How-
ever, one can use the z �→ 1− z symmetry of the problem
to show that the lowest eigenfunctions for w and θ are
even about z = 1/2 (see [18], Appendix C for a related
discussion). Thus we need only to solve the problem in
the two intervals [0, δ) and (δ, 1/2] (denoted by Regions I
and II, respectively) subject to the boundary conditions
at z = 0, symmetry conditions at z = 1/2 and matching
conditions at z = δ.

In Region I, τ ′ = −γ, and the solution to (4.13)–(4.15)
in the form of complex exponentials is

w = A1e
p1z + A2e

−p1z + A3e
p2z + A4e

−p2z

+ A5e
p3z + A6e

−p3z,

ū = −
[

A1p1e
p1z − A2p1e

−p1z + A3p2e
p2z − A4p2e

−p2z

+ A5p3e
p3z − A6p3e

−p3z
]

, (4.16)

θ =
ρ2

k2γRe

[

e2πi/3
(

A1e
p1z + A2e

−p1z
)

+ e−2πi/3
(

A3e
p2z+A4e

−p2z
)

+
(

A5e
p3z + A6e

−p3z
)

]

,

where ρ =
(

k2γ2Re

)1/3, and pn =
√

k2 + ρeiπ(1−2n/3) for
n = 1, 2, 3.

In Region II, where τ ′ = 0, the fields w and θ are
decoupled, and the general solution in exponential form is

w = B1e
kz + B2zekz + B3e

−kz + B4ze−kz,

ū = −
[

B1kekz + B2(1 + kz)ekz

−B3ke−kz + B4(1 − kz)e−kz
]

, (4.17)

θ = B5e
kz + B6e

−kz.
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The solution (4.16)–(4.17) must satisfy the following con-
ditions:

ū(0) = w(0) = 0, (4.18)

θ(0) − η Dθ(0) = 0, (4.19)

ū(1/2) = D2ū(1/2) = Dθ(1/2) = 0, (4.20)

[w]δ = [Dw]δ = [D2w]δ = [D3w]δ = [θ]δ = [Dθ]δ = 0.
(4.21)

Here (4.18) is the no-slip condition on the velocity field,
while the thermal BCs (2.17) are represented by (4.19).
The condition that w and θ are even, and hence ū = −Dw
is odd, about z = 1/2 is expressed in (4.20), where the first
two equations are equivalent to Dw(1/2) = D3w(1/2) = 0.
Lastly, we require that w and its first three derivatives,
and θ and its first derivative, are continuous at z = δ
(which also implies the necessary continuity of ū); this
condition, given in (4.21), matches the solution (4.16) in
Region I to the Region II solution (4.17), where we have
used the notation [f ]δ = f(δ+) − f(δ−) to indicate the
jump in a function f(z) across z = δ.

Equations (4.18)–(4.21) give 12 linear equations in the
12 unknown constants A1, . . . , A6, B1, . . . , B6, which we
may write in the form Mηc = 0, where c = [A1, . . . , B6]T
is the vector of unknowns, and Mη = Mη(δ, k, Re) is the
12×12 matrix of coefficients defined by (4.18)–(4.21) with
(4.16)–(4.17). Since we require a nontrivial solution for
w, ū and θ, the determinant of the coefficient matrix Mη

must vanish; this defines δk as the smallest δ for which
detMη(δ, k, Re) = 0.

We thus compute δk numerically by adjusting δ to find
a zero of det Mη(δ, k, Re), being careful to ensure that it
is the first zero. The remaining steps in the computation
involve successive minimization procedures, and have been
outlined above: we minimize δk over k to find δc, then
minimize the bound Bpwl,η(δc, b) over b > 1 to optimize
the bound on Nu for a given R.

4.2.3 Notes on the implementation

We performed our computations using the double pre-
cision arithmetic of Matlab, using the built-in routine
fminbnd for the three separate optimizations (over δ, k
and b, successively). Each computation was considerably
speeded up by providing well-chosen search intervals to
the minimization routines: intervals bracketing the desired
minima were predicted by extrapolation from the scaling
observed in calculations at smaller R, or from preliminary
computations with lower tolerance.

The first step of the numerical solution procedure re-
quired the calculation of δk, for given k and Re; after
checking that Re > Rac,η(k) (if false, we set δk = 1/2), we
obtained δk by seeking the first zero of det Mη. Since the
matrix of coefficients Mη(δ, k, Re) is in general complex-
valued, so is its determinant, implying that we needed to
find simultaneous zeros of the real and imaginary parts.
In our experience, though, the real part of det Mη(δ, k, Re)

vanished for all δ near δk(Re) (up to small numerical er-
ror); we thus located an interval containing δk by sweeping
through δ looking for a sign change of Im[detMη(δ, k, Re)],
and then computed δk more accurately by minimizing
| detMη(δ, k, Re)| using fminbnd.

Numerical challenges in this computation arose from
the properties of the coefficient matrix Mη(δ, k, Re), and
the finely balanced cancellations that permit its determi-
nant to vanish. Due to the growth of terms such as ek/2

and kek/2 (from (4.20)), beyond an η-dependent maximum
value of Re – ranging from about Re ≈ 108 for η = 0 to
Re ≈ 1013 for η = ∞ – without rescaling the calculations
were subject to numerical overflow. Using the observed
scaling of δc and kc with Re, though, by suitable row and
column operations on Mη the leading Re-dependent terms
were scaled out (see [38] for more details). This enabled
us to continue the computations to much higher Re values
(for all η, the corresponding bounds on Ra from (4.12) ex-
tended beyond 1030), sufficient to identify the asymptotic
scaling in all our cases, before the loss of precision due
to cancellation of almost equal terms became insurmount-
able in double precision (see [16] for a similar discussion
for the numerically more subtle infinite Prandtl number
convection, where it was found necessary to go to multiple
precision arithmetic to extract the asymptotic scaling).

As a check on the accuracy of our computations, we re-
covered the eigenfunctions for δ = δc(Re) and k = kc(Re),
checking for smoothness at z = δc (4.21) and satisfac-
tion of the boundary and symmetry conditions (4.18)–
(4.20). We found that for all η, the eigenfunctions re-
mained smooth up to at least Re ≈ 1024. For higher Re,
there was some loss of smoothness at z = δc through nu-
merical error; however, in our experience the computed
bounds such as (4.11) and (4.12) remained smoothly de-
pendent on R well beyond any breakdown of the eigen-
functions.

We remark that while in (4.16)–(4.17) we wrote down
the solution to (4.13)–(4.15) in the form of exponential
functions, we could equally well have expressed w, ū and θ
using hyperbolic functions. Indeed, by the symmetry con-
ditions (4.20) three coefficients would then immediately
vanish, leaving us to find zeros of the determinant of only
a 9 × 9 matrix. We found (see [38]) that the exponen-
tial and hyperbolic forms of the coefficient matrix, after
suitable rescaling, permitted computation to equally high
values of R and yielded the same numerical bounds. How-
ever, while the hyperbolic matrix (unsurprisingly) better
enforced the symmetry at z = 1/2, the exponential matrix
appeared to yield more accurate eigenfunctions within the
boundary layer and near z = δc. Consequently we have
largely used the exponential form of the coefficient ma-
trix, obtained from (4.16)–(4.17) with (4.18)–(4.21), for
our computations of the semi-optimal bound.

5 Analytical and numerical conservative
bounds

In this section we present and compare the conserva-
tive analytical and numerical bounds on convective heat
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transport, optimized over the restricted class of one-
parameter piecewise linear backgrounds of the form τδ(z)
(4.1). We first discuss the limiting fixed temperature and
fixed flux cases, as these demonstrate the two distinct scal-
ing regimes and provide a reference for general Biot num-
ber η.

5.1 Fixed temperature boundary conditions

5.1.1 Analytical estimates

For fixed temperature (Dirichlet) thermal BCs (η = 0), we
have ΔT = Δτ = 1, and by (4.2) γ = 1/2δ. The sufficient
analytical condition (4.7) for strong admissibility of τδ(z)
is then δ ≤ δa where

δ2
a =

32
Re

= 32
b − 1
bR

. (5.1)

Hence the bound (4.3) becomes

Nu = β ≤ Bpwl,0(δa, b) = 1 − b +
1

8
√

2
b3/2

(b − 1)1/2
R1/2.

(5.2)
Optimizing this bound by minimizing b3/2(b−1)−1/2 over
b > 1, we find that the optimal choice of the balance
parameter is ba,0 = 3/2, in which case Re = 3R and
δa = 4

√

2/3R−1/2 from (5.1). Setting b = 3/2 in (5.2)
then gives the best analytical (“a”) bound on Nu avail-
able in this approach, Bpwl,0(δa, ba,0) = −1/2 + (3/4)δ−1

a ,
which we denote by ˜Na,0(R) = ˜Ba,0(R). Recalling that for
fixed temperature BCs, the control parameter R is just the
Rayleigh number Ra, this rigorously bounds the Nusselt
number for fixed temperature BCs (valid for all R = Ra
sufficiently large that δa ≤ 1/2) by

Nu ≤ ˜Na,0 = −1
2

+
3
√

6
32

Ra1/2 ≈ −1
2

+0.230 Ra1/2. (5.3)

We note that our bound is slightly better than the initial
rigorous bound Nu ≤ 1

4Ra1/2 − 1 derived by Doering
and Constantin [13] using a piecewise linear background,
which did not make use of a balance parameter [24],
although slightly worse than their improved analytical
bound Nu ≤ 1

6Ra1/2 − 1 obtained by strengthening the
spectral constraint, and finding the optimal solution of
the resulting simplified variational problem [13].

5.1.2 Semi-optimal bounds

The Nu-Ra scaling found by solving the semi-optimal
bounding problem numerically, as described in Section 4.2,
is shown in Figure 1. The inset confirms that the bound
bifurcates at the well-known critical Rayleigh number for
fixed temperature convection, Rac,0 ≈ 1707.76 [39], as ex-
pected from the discussion in Section 3.1.1. However, the
bound bifurcates discontinuously from Nu = 1 for Ra just
above Rac,0, as also seen in [23], since we have constrained

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

log10 Ra

lo
g 1

0
N

u 1707.7 1707.75 1707.8
1

1.1

1.2

1.3

1.4

Fig. 1. (Color online) Fixed temperature BCs: depen-

dence of the conservative numerical upper bound ˜N0 on the
Nusselt number Nu (solid line), on the Rayleigh number Ra

(which here equals the control parameter R); we find ˜N0 ∼
0.045038Ra0.5, where for Ra � 1025 the computed exponent
is 0.5 with an error of less than 10−12; the dashed line shows
the analytical bound (5.3), ˜Na,0 = −1/2+ (3

√
6/32)Ra1/2. In-

set: behaviour of the bound near the bifurcation value Rac,0 ≈
1707.76.

the slope of our backgrounds τδ(z) to vanish in the middle,
which does not accurately capture the critical mode at bi-
furcation; a negative slope in the bulk would presumably
permit a smoother transition in the bound [16].

Our overall numerical bound, optimized over piecewise
linear backgrounds τδ(z), scales as Nu � 0.04504 Ra1/2.
The prefactor significantly improves the analytical bound
(5.3), and is within less than a factor of two of the optimal
bound for fixed temperature, arbitrary Prandtl number
convection, Nu − 1 ≤ 0.02634 Ra1/2, obtained by Plasting
and Kerswell [19]; it is also weaker than the bound Nu −
1 ≤ 0.0335 Ra1/2 obtained by optimizing over piecewise
quadratic profiles [15,40].

The intermediate quantities in this bounding calcu-
lation all scale as predicted by the analysis; see [38]. In
particular, the balance parameter bc approaches 1.5 (see
Fig. 7 below), with bc − 1.5 ∼ 17 Ra−1/2, so that Re →
3Ra. With ˜N0 ∼ bc/2δc ∼ 3/4δc, we find also that δc ∼
16.65 Ra−1/2 at the Fourier mode kc ∼ 0.07215 Ra1/2, so
δckc ∼ 1.2015 (see Fig. 6a); recall that kc is not available
from the analysis uniform in wave number.

5.2 Fixed flux boundary conditions

5.2.1 Analytical estimates

We review the case of fixed flux (Neumann) boundaries
(η = ∞) originally discussed in [25], for which the ther-
mal BCs imply β = γ = 1, Δτ = 2δ by (4.2), the spec-
tral constraint is satisfied for δ ≤ δa given by (4.7), and



576 The European Physical Journal B

using (4.4) we have the lower bound on the averaged tem-
perature drop ΔT ≥ Dpwl,∞(δ, b) = 1 − b + 2δ b.

Since b > 1, in order for Dpwl,∞ to remain positive as
R → ∞ (so δ → 0), we need b− 1 = O(δ), which suggests
the Ansatz b = 1 + c δ for some O(1) constant c > 0. This
implies Re = (1 + c δ)R/c δ ∼ R/c δ asymptotically for
large R (small δ), so that (4.7) becomes

δ4
a = 8 R−1

e ∼ 8c δa R−1, (5.4)

and hence δa ∼ 2c1/3R−1/3 and Re ∼ 2−1(R/c)4/3. Sub-
stituting for b and δ = δa in (4.4), we find

Nu−1 = ΔT ≥ Dpwl,∞(δa, 1 + c δa)

= (2 − c) δa + 2c δ2
a

∼ (2 − c) δa ∼ 2c1/3(2 − c)R−1/3. (5.5)

The maximum value of 2c1/3(2 − c) is 3 · 2−1/3 when c =
ca,∞ = 1/2. We conclude that ˜Da,∞(R) = Dpwl,∞(δa, 1 +
δa/2) ∼ 3 δa/2 ∼ 3 (2R)−1/3 is the best lower bound on
ΔT in this approach, giving the R-dependent asymptotic
upper bound on Nu

Nu ≤ ˜Na,∞(R) =
[

˜Da,∞(R)
]−1

∼ 3−121/3R1/3. (5.6)

In order to find the dependence of Nu on the Rayleigh
number Ra, we bound Ra = RΔT (2.12) from below,

Ra ≥ ˜Ra,∞(R) = R ˜Da,∞(R) ∼ 3 × 2−1/3R2/3. (5.7)

Finally, we can rewrite (5.6)–(5.7) to estimate the Nusselt
number Nu in terms of the effective control parameter Re,
the control parameter R and the Rayleigh number Ra, as
in [25]:

Nu ≤ ˜Na,∞ ∼ 21/4

3
R1/4

e ∼ 21/3

3
R1/3 (5.8)

�
√

2
27

Ra1/2 ≈ 0.272 Ra1/2. (5.9)

5.2.2 Semi-optimal bounds

We show the numerically obtained Nu–Ra bounds in
Figure 2; the result is Nu � 0.07808 Ra1/2. This optimal
bound over piecewise linear profiles τδ(z) improves on the
previous analytical bound (5.9) Nu ≤ 0.272 Ra1/2 [25].
Again, the bound bifurcates, discontinuously, at the criti-
cal Rayleigh number for fixed flux convection, Rac,∞ =
6! = 720 [37,41]. The overall bound is arrived at via
the intermediate scalings Nu = (ΔT )−1 � 0.21 R

1/4
e and

Nu � 0.1827 R1/3, consistent with (5.8). The decay of
the optimal numerically computed balance parameter bc

to 1 satisfies bc − 1 ∼ c∞δc for c∞ = 0.5, as predicted
analytically. In the large-R limit, the numerical bound is
consistent with the prediction ˜N∞δc ∼ 2/3 (compare with
˜N0δc ∼ 3/4 in the fixed temperature case); where δc and
the corresponding kc are related via δckc ∼ 0.6161, which
is about half of the corresponding fixed temperature value
(see Fig. 6a below).
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Fig. 2. (Color online) Fixed flux BCs: the conservative numer-

ical upper bound ˜N∞ = ˜D−1
∞ on the Nusselt number Nu (solid

line), plotted against the (numerical) lower bound ˜R∞ = R ˜D∞
on the Rayleigh number Ra; we compute ˜N∞ ∼ 0.07808 ˜R0.5

∞ ,
where the numerical exponent is about 0.5 + 10−5; the dashed

line shows the analytical bound (5.3), ˜Na,∞ ≤ √

2/27 ˜R1/2
a,∞.

Inset: Behaviour of the bound near the bifurcation value
Rac,∞ = 720.

5.3 Mixed boundary conditions with fixed Biot number

For general mixed (Robin) thermal BCs (2.5) with fixed
Biot number η, using (4.2) in (4.7) a sufficient condition
for strong admissibility of the background is δ ≤ δa, where

γ(δa)2δ4
a =

(1 + 2η)2

4(δa + η)2
δ4
a =

8
Re

= 8
b − 1
b R

. (5.10)

For fixed 0 < η < ∞, the scaling of δa with R, and hence
the overall structure of the bounds, behaves either as the
fixed temperature or as the fixed flux case, depending on
whether δa is larger or smaller than η, respectively. How-
ever, since δa → 0 as R → ∞ (Ra → ∞), asymptotically
for large R the bounds are as for fixed flux BCs for any
η > 0.

Specifically, if δa � η (so necessarily η � 1), (4.2) im-
plies γ ∼ 1/2δa, Δτ ∼ 1, and in this asymptotic limit the
bounds of Section 5.1 carry over directly. More generally,
whenever δa ≥ η we have γ ≥ 1/(4δa) and Δτ ≥ 1/2; that
is, γ grows as O(δ−1

a ) while Δτ is bounded below away
from zero. It is then straightforward to verify that quan-
tities scale as in the fixed temperature case: for instance,
b − 1 = O(1), ΔT ≥ O(1), Ra = O(R) = O(Re), δa =
O(R−1/2

e ) = O(Ra−1/2), and Nu ≤ O(R1/2) ≤ O(Ra1/2).
This “fixed temperature scaling regime” persists with

increasing R, until δa has decreased to δa = η, which by
the above scaling predictions occurs at a transition value
R = Rt(η) = O(η−2).

As R increases above Rt(η), we have δa ≤ η, and the
system enters a new “fixed flux scaling regime”, which
is absent for fixed temperature BCs (η = 0). When 0 <
δ ≤ δa ≤ η, we find (2 + η−1)/4 ≤ γ < (2 + η−1)/2 and
δ(2 + η−1)/2 ≤ Δτ < δ(2 + η−1), so that for fixed η > 0,



R.W. Wittenberg and J. Gao: Conservative bounds for convection with fixed Biot number boundaries 577

5 10 15 20 25 30

0

5

10

15

log10 Ra

lo
g 1

0
β

5 10 15 20 25 30
−15

−10

−5

0

log10 Ra

lo
g 1

0
Δ

T

η = 0
η = 10−8

η = 10−4

η = 10−2

η = 1
η = ∞

Fig. 3. (Color online) General Biot number BCs: conservative

numerical upper bound ˜Bη on β (top) and lower bound ˜Dη on

ΔT (bottom), as functions of the (numerical) lower bound ˜Rη

on the Rayleigh number Ra, for Biot numbers η = 0 (fixed
temperature: thin line), η = 10−8, η = 10−4, η = 10−2, η =
1 (here hardly distinguishable from the fixed flux case), and
η = ∞ (fixed flux: thick solid line); η is increasing from top
to bottom in both figures. For η = 0, ΔT = 1 and β increases
without bound; while for any η > 0, β is bounded above and
ΔT → 0 for large Ra. Note the distinct transition between
“fixed temperature” and “fixed flux” scaling for η 	 1.

Δτ decays as O(δ), while γ is bounded above. By the
same argument as in Section 5.2, for fixed η > 0 to ensure
a positive lower bound Dpwl,η(δ, b) on ΔT when δ ≤ δa,
the balance parameter b should scale as b − 1 = O(δ),
which implies ΔT ≥ O(δ). It follows that, for η > 0 and
sufficiently large R, quantities scale as in the fixed flux
case, with δa = O(R−1/4

e ) = O(R−1/3), Ra ≥ O(R2/3),
and Nu ≤ O(R1/3) ≤ O(Ra1/2).

From the bounds, we can deduce the significant phys-
ical difference between the two scaling regimes: In the
fixed temperature regime, for increasing driving as mea-
sured by the control parameter R, the Nusselt number
Nu = β/ΔT increases due to growth in the dimensionless
averaged boundary heat flux β, while ΔT decreases only
slightly. For nonzero Biot number, however, β eventually
saturates, and in the large-R fixed flux regime, the further
growth of Nu is due to decrease in ΔT , the nondimen-
sional averaged temperature drop across the fluid. This
behaviour is clearly observed in the numerical bounds on
β and ΔT shown in Figure 3.

We remark that when the boundaries are sufficiently
poorly conducting that η ≥ 1/2, we always have δa ≤ η,
and only the fixed flux regime is present, as is seen in
Figure 3 for η = 1. A transition between distinct scaling
regimes is found only in systems with highly, but imper-
fectly, conducting boundaries, so 0 < η � 1; see [35] for
more discussion.

5.3.1 Analytical scaling in the large-R asymptotic limit

We derive the scaling of the bounds in the strong driving
limit, so that δ ≤ δa � 1, assuming also that we are well
within the “fixed flux regime” described above; that is,
R � Rt(η), so δa � η. Since then Δτ = O(δ(2 + η−1)) �
1, as in the fixed flux case we need to choose the balance
parameter b > 1 so that b−1 and Δτ are of the same order,
to ensure a positive lower bound Dpwl,η(δ, b) on ΔT . Hence
we choose b = 1 + c δ for some c = c(η), with c δ � 1 in
this asymptotic limit.

For δ � η we have γ(δ) ∼ (2+η−1)/2, and for c δ � 1,
Re = (1 + c δ)R/cδ ∼ R/cδ. The sufficient admissibility
condition (5.10) on δ then becomes

δ4
a ∼ 32

(

2 + η−1
)−2

R−1
e ∼ 32c δa

(

2 + η−1
)−2

R−1,

or
δa ∼ 25/3c1/3

(

2 + η−1
)−2/3

R−1/3. (5.11)

Using (4.2)–(4.4), in this limit we estimate the bounds on
β and ΔT as

β ≤ Bpwl,η(δ, 1 + cδ) =
1 + 2η + c δ(1 − 2δ)

2(δ + η)
∼ 1 + 2η

2η

and

ΔT ≥ Dpwl,η(δ, 1 + cδ) =
δ[1 − cη + 2η(1 + cδ)]

δ + η

∼ δ

η
[1 + (2 − c)η] , (5.12)

and hence find an upper bound on Nu = β/ΔT ,

Nu ≤ Npwl,η(δ, 1 + cδ) ∼ 1
2δ

1 + 2η

1 + (2 − c)η
(5.13)

for any δ ≤ δa. Substituting for δa from (5.11), the best
asymptotic bound on Nu for a given R and η > 0 is thus

Npwl,η(δa, 1 + c δa) ∼ (1 + 2η)5/3

28/3 η2/3

R1/3

c1/3 [1 + (2 − c)η]
.

(5.14)
The maximum value of c1/3 [1 + (2 − c)η] for fixed η > 0
is 3 × 2−8/3η−1/3(1 + 2η)4/3, attained at

c = ca,η =
(

2 + η−1
)

/4, (5.15)

note that with δ � min{1, η}, we have ca,η δ � 1, as
required. Substituting for this optimal c in (5.13), we find
that the bound on Nu scales as 2/(3δ) in this fixed flux
regime (compare the fixed temperature analytical scaling
3/(4δ)). Using c = ca,η from (5.15) in (5.14), we now find
that the optimal analytical R-dependent upper bound on
Nu for general nonzero Biot number η in this approach is

Nu ≤ ˜Na,η(R) ∼ 3−1
(

2 + η−1
)1/3

R1/3 (5.16)

(which translates to Nu ≤ 2−1/43−1(2 + η−1)1/2R
1/4
e ).

That the prefactor in (5.16) diverges as η → 0 confirms
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Fig. 4. (Color online) General Biot number BCs: the upper

bound ˜Nη on the Nusselt number Nu, scaled by ˜R1/2
η , as a

function of ˜Rη , the lower bound on the Rayleigh number Ra.
For any η > 0 the asymptotic bound coincides with that in the
fixed flux case, Nu ≤ 0.078 Ra1/2 as Ra → ∞.

that this scaling breaks down in the fixed temperature
limit. Similarly, using (5.11) and (5.15) in (5.12) gives a
lower bound on ΔT , and hence (via Ra = RΔT ) on the
Rayleigh number:

Ra ≥ ˜Ra,η(R) = R ˜Da,η(R) ∼ 3 × 2−1
(

2 + η−1
)2/3

R2/3.
(5.17)

Finally, combining (5.16) and (5.17), the conservative an-
alytical upper bound on the Nu-Ra scaling for η > 0,
asymptotically for large Ra, is

Nu � 21/2 3−3/2 Ra1/2 ≈ 0.272 Ra1/2. (5.18)

Note that this bound is independent of Biot number η > 0,
and coincides with that in the fixed flux case.

5.3.2 Conservative numerical bounds and their scaling

The semi-optimal bounds on the Nu-Ra relationship, com-
puted as described in Section 4.2, are summarized in
Figure 4. The bounds take the form Nu ≤ Cη(Ra)Ra1/2,
where for sufficiently large Ra, C0(Ra) = C0 ≈ 0.045
and C∞(Ra) = C∞ ≈ 0.078. For any η > 0, we see that
Cη(Ra) → C∞ as Ra → ∞, while for any large enough
finite Ra, for sufficiently small η the bounds behave as in
the fixed temperature case, Cη(Ra) → C0 as η → 0. That
is, the Ra → ∞ and η → 0 limits do not commute; fixed
temperature BCs form a singular limit of this bounding
problem [35].

As suggested by Figure 4, for small η we compute
the transition Rayleigh number Rat(η) (and the corre-
sponding Rt(η)) as that for which Nu/Ra1/2 has crossed
halfway from the fixed temperature to the fixed flux lim-
iting values: Cη(Rat(η)) = (C0 + C∞)/2 ≈ 0.0615. We
find the expected scaling, Rat(η) ∼ 221 η−2, consistent
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Fig. 5. (Color online) General Biot number BCs: the upper

bound ˜Nη on the Nusselt number Nu, scaled by R1/3, as a
function of the control parameter R. For small η > 0, there is
an extended “fixed temperature” regime where ˜Nη ∼ O(R1/2),
but beyond a transition value Rt(η) ∼ O(η−2) the fixed flux
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Fig. 6. (Color online) General Biot number BCs: (a) the com-

puted δckc given as a function of ˜Rη, the lower bound on Ra.

(b) The critical wave number kc, scaled by ˜R1/2
η , as a function

of ˜Rη; kc/ ˜R1/2
η appears to have the same large-Ra asymptotic

values in the fixed temperature and fixed flux limits.

with Rat(η) → ∞ as η → 0. We also find δc ≈ 0.8 η at
Ra = Rat(η), confirming that the transition occurs when
δ and η are comparable.

The behaviour of the Nu bound with increasing control
parameter R, shown in Figure 5, clearly reveals the dis-
tinct scaling regimes: for sufficiently small η, the bound
scales initially as for fixed temperature, Nu ≤ C0 R1/2;
but for R ≥ Rt(η), it takes the fixed flux scaling form
Nu ≤ c̃ηR1/3. The analytical bounds suggest investigating
the dependence of the prefactor c̃η on 2 + η−1; consistent
with the analysis, we find c̃η = c̃ (2 + η−1)1/3, where we
compute c̃ ≈ 0.145 (compare the analytical result c̃ = 1/3
(5.16)).

The numerically computed Re and δc also scale as in
the analytical bounds [38]. Figure 6 shows kc, for which the
uniform-in-k analysis makes no scaling predictions. For
any η > 0, as usual we find the fixed flux value δckc ≈ 0.6
as Ra → ∞, while for small η and small Ra, as for fixed
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Fig. 7. (Color online) General Biot number BCs: the critical

balance parameter bc as a function of ˜Rη, the lower bound
on Ra. In the “fixed flux” scaling regime, we find bc,η − 1 ∼
O( ˜R−1/2

η ), and can write bc,η − 1 = cη δc.

temperature BCs we have δckc ≈ 1.2. Interestingly, the
asymptotic scaling of kc with Ra does not appear to dis-
tinguish between η = 0 and η > 0; as seen in Figure 6b,
while kcRa1/2 increases slightly during the scaling transi-
tion, its large-Ra fixed flux and fixed temperature limits
coincide.

The qualitative change in the behaviour of the balance
parameter b in the η = 0 and η = ∞ limits, as discussed
in Sections 5.1–5.2, is obvious in Figure 7. For η � 1,
we see that bc ≈ 3/2 for Ra < Rat(η), while for higher
Ra, we have bc − 1 = O(Ra−1/2). In this regime, we have
bc,η − 1 ∼ cη δc, where we compute cη = 0.25 (2 + η−1),
coinciding with the analytical result (5.15).

6 Discussion

In Rayleigh-Bénard convection with highly, but not per-
fectly, conducting bounding plates, with dimensionless
Biot number 0 < η � 1, the bounding calculations reveal
a clear transition in scaling: for small thermal driving, the
system behaves as if the plates were perfect conductors,
corresponding to fixed temperature BCs; while above a
transition Rayleigh number Rat(η), the bounds scale as if
the plates were effectively insulating, in which case fixed
flux conditions would be appropriate.

It is tempting to wonder whether this bounding tran-
sition reflects any observable changes in the statistics of
the connectively turbulent fluid. We note, though, that
the transition occurs when the parameter δ, a proxy for
the thermal boundary layer thickness, is comparable to η;
equivalently, when Nu ≈ O(η−1). For highly conducting
boundaries any transition is thus likely to be beyond the
reach of experiment or direct numerical simulation. Fur-
thermore, recent computational studies have been unable
to distinguish between properties of fixed flux and fixed
temperature high-Ra Rayleigh-Bénard convection [32].

The evidence regarding whether, and how, the thermal
BCs influence properties of turbulent convection for high
Ra thus seems to be inconclusive. Any potential effect of
the thermal characteristics of the boundaries is also, to
date, unknown for flows other than finite Prandtl num-
ber Rayleigh-Bénard convection (for example, analytical
bounds on convective heat transfer with fixed flux BCs [25]
have not, to our knowledge, been successfully derived for
porous medium convection [22]).

Using piecewise linear background profiles τδ(z), we
have obtained bounds on heat transport in finite Prandtl
number Rayleigh-Bénard convection for mixed thermal
BCs of general Biot number 0 ≤ η ≤ ∞, both by us-
ing elementary analytical estimates uniform in wave num-
ber, and by numerically optimizing over all such profiles
using the method developed by Otero [18]. We find that
the bounds all take the form Nu ≤ Cη Ra1/2, where in
the large-Ra limit, Cη = C∞ for any η > 0. As ex-
pected, the numerical optimization improves the prefac-
tor: from C0 = 3

√
6/32 ≈ 0.23 to 0.045 for fixed tempera-

ture boundaries, and from C∞ =
√

2/27 ≈ 0.272 to 0.078
for fixed flux and general thermal BCs. For η > 0, these
bounds improve on previous results [25,35] for imperfectly
conducting plates.

We observe that the computed asymptotic bounds on
the Nu-Ra relationship are lower for fixed temperature
BCs, corresponding to perfectly conducting boundaries,
than for perfectly insulating or more general imperfectly
conducting plates. It remains to be seen whether this holds
true also for the best upper bounds, optimizing over all
background profiles τ(z) rather than merely over a one-
parameter piecewise linear family.

Indeed, a fundamental open question here is whether
for fixed flux or general BCs, the optimal scaling exponent
over all admissible backgrounds τ(z) in a bound of the
form Nu ≤ C Rap remains p = 1/2, as it does in the fixed
temperature case. In this regard the example of infinite
Prandtl number convection (with fixed temperature BCs)
is instructive: the standard background method using the
one-parameter family τδ(z) yielded an analytical bound
of the form Nu ≤ CRap with p = 2/5 [21], and this scal-
ing was confirmed by the semi-optimal numerical solution
for such backgrounds [18]. However, the lower exponent
p = 1/3 was suggested by calculations using the MHB
bounding approach [42], and by a rigorous bound ob-
tained outside the CDH background field formalism [43].
That the background method could also yield lower scal-
ing exponents in this problem was shown numerically by
Plasting and Ierley [16], who extended Otero’s method to
a two-parameter family of piecewise linear backgrounds
τ(z) in which the interior gradient τ ′ was allowed to be
nonzero, and found a high-Ra scaling of the resultant con-
servative bounds consistent with p = 7/20. Indeed, an im-
proved analytical bound for infinite Prandtl number flow
using the background method has since been found: us-
ing a field τ(z) with a logarithmic, stably stratified profile
in the bulk of the fluid, Doering et al. [44] have proved
Nu ≤ CRa1/3(lnRa)1/3.

Finally, we remark that Rayleigh-Bénard convection
with imperfectly conducting boundaries may be modelled
more realistically by considering a horizontal fluid layer
in contact above and below with plates of dimensionless
finite thickness d and conductivity λ (scaled relative to the
corresponding fluid quantities). Bounds on heat transport
may also be obtained for this system [35]; at the level
of conservative analyses for piecewise linear backgrounds,
they coincide with those for mixed thermal BCs with Biot
number η = d/λ.
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